Motivations Définition et Opérations Loi d'une variable aléatoire réelle Indépendance des variables aléatoires réelles

Probabilités Généralités sur les variables aléatoires réelles

Julian Tugaut

Télécom Saint-Étienne

Sommaire

- Motivations
- 2 Définition et Opérations
 - Définition
 - Opérations sur les variables aléatoires réelles
- 3 Loi d'une variable aléatoire réelle
 - Exemple introductif
 - Définition
 - Fonction de répartition
- 4 Indépendance des variables aléatoires réelles

Plan

- Motivations
- 2 Définition et Opérations
- 3 Loi d'une variable aléatoire réelle
- 4 Indépendance des variables aléatoires réelles

Motivations

Si l'on ne s'intéressait qu'à des évènements, les probabilités seraient d'un intérêt réduit. De fait, on regarde ce que l'on appelle des variables aléatoires.

Motivations

Si l'on ne s'intéressait qu'à des évènements, les probabilités seraient d'un intérêt réduit. De fait, on regarde ce que l'on appelle des variables aléatoires.

Les variables aléatoires sont à la source de très nombreuses applications rien que par le mouvement Brownien (qui est une collection de variables aléatoires vérifiant certaines propriétés) : finance, biologie, batteries de lithium, physique des plasmas mais aussi apprentissage profond par réseaux de neurones...

Motivations

Si l'on ne s'intéressait qu'à des évènements, les probabilités seraient d'un intérêt réduit. De fait, on regarde ce que l'on appelle des variables aléatoires.

Les variables aléatoires sont à la source de très nombreuses applications rien que par le mouvement Brownien (qui est une collection de variables aléatoires vérifiant certaines propriétés) : finance, biologie, batteries de lithium, physique des plasmas mais aussi apprentissage profond par réseaux de neurones...

Les variables aléatoires réelles sont l'objet de ce chapitre.

Plan

- Motivations
- 2 Définition et Opérations
 - Définition
 - Opérations sur les variables aléatoires réelles
- 3 Loi d'une variable aléatoire réelle
- 4 Indépendance des variables aléatoires réelles

Exemple

Soit une population de N composants électroniques numérotés de 1 à N. Soit z_i l'impédance de l'individu numéro i pour tout $i \in [1; N]$.

Exemple

Soit une population de N composants électroniques numérotés de 1 à N. Soit z_i l'impédance de l'individu numéro i pour tout $i \in [1; N]$.

On considère l'expérience aléatoire e: tirer au hasard un individu de la population. On lui associe l'univers Ω . Les résultats possibles sont les ω_i :="on obtient l'individu numéro i" pour $i \in \llbracket 1; N \rrbracket$. L'espace fondamental est alors $\Omega = \{\omega_1, \cdots, \omega_N\}$. La probabilité que l'on définit sur Ω est l'équiprobabilité car le tirage est au hasard : $\mathbb{P}(\omega_1) = \cdots = \mathbb{P}(\omega_N) = \frac{1}{N}$.

On considère l'application X de Ω dans \mathbb{R} avec $X(\omega_i) := z_i$. Si l'on tire l'individu numéro i, X prend la valeur z_i , c'est-à-dire l'impédance de l'individu tiré.

On considère l'application X de Ω dans \mathbb{R} avec $X(\omega_i) := z_i$. Si l'on tire l'individu numéro i, X prend la valeur z_i , c'est-à-dire l'impédance de l'individu tiré.

On dit que X a pour réalisation l'impédance de l'individu tiré.

On considère l'application X de Ω dans \mathbb{R} avec $X(\omega_i) := z_i$. Si l'on tire l'individu numéro i, X prend la valeur z_i , c'est-à-dire l'impédance de l'individu tiré.

On dit que X a pour réalisation l'impédance de l'individu tiré.

L'application X est appelée une variable aléatoire réelle.

On peut observer sur cet exemple que les réalisations possibles de la variable aléatoire X dépendent des résultats de l'expérience aléatoire sur laquelle l'espace fondamental est défini.

On peut observer sur cet exemple que les réalisations possibles de la variable aléatoire X dépendent des résultats de l'expérience aléatoire sur laquelle l'espace fondamental est défini.

De manière générale, une variable aléatoire réelle est une fonction de Ω dans $\mathbb R$ telle que les réalisations de la fonction sont entièrement déterminées par les résultats de l'expérience aléatoire.

Définition

Définition

On appelle variable aléatoire réelle définie sur un espace fondamental Ω toute application de Ω dans $\mathbb R$:

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega).$$

 $X(\omega)$ est une réalisation possible de X.

Définition

Définition

On appelle variable aléatoire réelle définie sur un espace fondamental Ω toute application de Ω dans $\mathbb R$:

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega).$$

 $X(\omega)$ est une réalisation possible de X.

L'ensemble de toutes les réalisations possibles de X, à savoir $\{X(\omega): \omega \in \Omega\}$, est noté $X(\Omega)$.

Différentes familles de variables aléatoires

Remarque

On peut classer les variables aléatoires (et subséquemment les lois de probabilité associées) en fonction de $X(\Omega)$. En fait, l'ensemble des réalisations possibles joue un grand rôle alors que l'espace fondamental lui-même a un rôle mineur par la suite; ce qui est normal car nous n'y avons quasiment jamais accès.

Différentes familles de variables aléatoires

Remarque

On peut classer les variables aléatoires (et subséquemment les lois de probabilité associées) en fonction de $X(\Omega)$. En fait, l'ensemble des réalisations possibles joue un grand rôle alors que l'espace fondamental lui-même a un rôle mineur par la suite; ce qui est normal car nous n'y avons quasiment jamais accès.

Définition

Lorsque l'ensemble des réalisations possibles de la variable aléatoire réelle X est fini ou infini dénombrable, on dit que la variable aléatoire réelle X est discrète. Sinon, on dit que la variable aléatoire réelle X est continue.

Exemple avec $X(\Omega)$ fini

Soit un évènement A associé à l'expérience aléatoire e (c'est-à-dire : $A \subset \Omega$ où Ω est l'univers associé). On définit la variable aléatoire $\mathbb{1}_A$ de la façon suivante :

$$\mathbb{1}_A : \Omega \to \{0,1\}$$

$$\omega \mapsto \mathbb{1}_A(\omega) := \left\{ \begin{array}{ll} 1 & \text{ si } \omega \in A \\ 0 & \text{ si } \omega \notin A \end{array} \right..$$

Ici, $\mathbb{1}_A(\Omega) = \{0, 1\}$ est un ensemble fini donc la variable aléatoire réelle $\mathbb{1}_A$ est discrète.

Exemple avec $X(\Omega)$ fini

Soit un évènement A associé à l'expérience aléatoire e (c'est-à-dire : $A \subset \Omega$ où Ω est l'univers associé). On définit la variable aléatoire $\mathbb{1}_A$ de la façon suivante :

$$\mathbb{1}_A : \Omega \to \{0,1\}$$

$$\omega \mapsto \mathbb{1}_A(\omega) := \left\{ \begin{array}{ll} 1 & \text{ si } \omega \in A \\ 0 & \text{ si } \omega \notin A \end{array} \right..$$

Ici, $\mathbb{1}_A(\Omega) = \{0, 1\}$ est un ensemble fini donc la variable aléatoire réelle $\mathbb{1}_A$ est discrète.

Il convient de noter que dans l'exemple précédent, Ω n'est pas obligatoirement fini ou infini dénombrable.

Exemple avec $X(\Omega)$ infini dénombrable

On se donne l'expérience aléatoire suivante. On observe le nombre d'octets échangés sur un système de pair à pair durant un intervalle de temps de durée fixée. Les résultats possibles sont les $\omega_n :=$ "n octets sont échangés". L'espace fondamental est alors $\Omega = \{\omega_0, \omega_1, \cdots, \omega_n, \cdots\}$. On se donne la variable aléatoire réelle X définie par

$$X: \Omega \to \mathbb{N}$$
 $\omega_n \mapsto X(\omega_n) := n.$

L'ensemble des réalisations possibles est ainsi $X(\Omega) = \mathbb{N}$. La variable aléatoire réelle X est donc discrète.

Exemple avec $X(\Omega)$ infini non dénombrable

On se donne l'expérience aléatoire suivante : on observe la durée de vie d'un composant électronique. Les résultats possibles sont les $\omega_t:=$ "la durée de vie du composant est t", avec $t\in\mathbb{R}_+$. L'espace fondamental est alors $\Omega=\{\omega_t:t\geq 0\}$. On se donne la variable aléatoire réelle X définie par

$$X: \Omega \to \mathbb{R}_+$$

$$\omega_t \mapsto X(\omega_t) := t.$$

L'ensemble des réalisations possibles est ainsi $X(\Omega) = \mathbb{R}_+$. La variable aléatoire réelle X est donc continue.

Fonction d'une variable aléatoire réelle - 1

Soit f une fonction réelle de la variable réelle. On se donne une variable aléatoire réelle X de Ω dans \mathbb{R} . On définit alors la variable aléatoire réelle f(X) par :

$$f(X)(\omega) := f[X(\omega)].$$

Fonction d'une variable aléatoire réelle - 2

Par exemple, avec $f_p(x) := x^p$:

$$f_p(X) = X^p : \Omega \to \mathbb{R}$$

 $\omega \mapsto X(\omega)^p$,

pour tout $p \in \mathbb{N}^*$.

Fonction d'une variable aléatoire réelle - 2

Par exemple, avec $f_p(x) := x^p$:

$$f_p(X) = X^p : \Omega \to \mathbb{R}$$

 $\omega \mapsto X(\omega)^p$,

pour tout $p \in \mathbb{N}^*$. Cette variable aléatoire réelle est utilisée pour calculer le **moment d'ordre** p de la variable aléatoire réelle X.

Opération sur deux variables aléatoires réelles

Soient deux variables aléatoires réelles X et Y définies sur un même espace fondamental Ω . Soit h une fonction de \mathbb{R}^2 dans \mathbb{R} . On définit la variable aléatoire réelle h(X,Y):

$$h(X, Y) : \Omega \to \mathbb{R}$$

 $\omega \mapsto h[X(\omega), Y(\omega)].$

Opération sur deux variables aléatoires réelles

Soient deux variables aléatoires réelles X et Y définies sur un même espace fondamental Ω . Soit h une fonction de \mathbb{R}^2 dans \mathbb{R} . On définit la variable aléatoire réelle h(X,Y):

$$h(X, Y) : \Omega \to \mathbb{R}$$

 $\omega \mapsto h[X(\omega), Y(\omega)].$

On en déduit immédiatement que la somme de deux variables aléatoires réelles est une variable aléatoire réelle et de même avec le produit.

Plan

- Motivations
- Définition et Opérations
- 3 Loi d'une variable aléatoire réelle
 - Exemple introductif
 - Définition
 - Fonction de répartition
- 4 Indépendance des variables aléatoires réelles

Exemple

Soit l'espace fondamental $\Omega:=\{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6,\omega_7,\omega_8\}$ muni de la probabilité $\mathbb P$:

							ω_7	
$\mathbb{P}(\{\omega\})$	0.1	0.05	0.1	0.1	0.15	0.1	0.15	0.25

Exemple

Soit l'espace fondamental $\Omega := \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_8\}$ muni de la probabilité $\mathbb P$:

ω	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8
$\mathbb{P}(\{\omega\})$	0.1	0.05	0.1	0.1	0.15	0.1	0.15	0.25

On note notamment que P n'est pas l'équiprobabilité.

On se donne maintenant la variable aléatoire réelle X de Ω dans $\mathbb R$ définie par

ω	ω_1	ω_2	ω_3	ω_{4}	ω_5	ω_6	ω_7	ω_8
$X(\omega)$	2	4	1	2	5	4	5	3

On se donne maintenant la variable aléatoire réelle X de Ω dans $\mathbb R$ définie par

	ω_1							
$X(\omega)$	2	4	1	2	5	4	5	3

L'ensemble des réalisations possibles de X est alors $X(\Omega) = \{1, 2, 3, 4, 5\}.$

Calculons maintenant la probabilité que X ait la réalisation 4, notée $\mathbb{P}(X=4)$, c'est-à-dire la probabilité d'obtenir un résultat ω tel que $X(\omega)=4$. Par une simple observation, on a

$${X = 4} = {\omega : X(\omega) = 4} = {\omega_2, \omega_6}.$$

Calculons maintenant la probabilité que X ait la réalisation 4, notée $\mathbb{P}(X=4)$, c'est-à-dire la probabilité d'obtenir un résultat ω tel que $X(\omega)=4$. Par une simple observation, on a

$${X = 4} = {\omega : X(\omega) = 4} = {\omega_2, \omega_6}.$$

Conséquemment, la probabilité est égale à

$$\mathbb{P}(X=4) = \mathbb{P}(\{\omega_2, \omega_6\}) = \mathbb{P}(\{\omega_2\}) + \mathbb{P}(\{\omega_6\}) = 0.05 + 0.1 = 0.15.$$

Calculons maintenant la probabilité que X ait la réalisation 4, notée $\mathbb{P}(X=4)$, c'est-à-dire la probabilité d'obtenir un résultat ω tel que $X(\omega)=4$. Par une simple observation, on a

$${X = 4} = {\omega : X(\omega) = 4} = {\omega_2, \omega_6}.$$

Conséquemment, la probabilité est égale à

$$\mathbb{P}(X=4) = \mathbb{P}(\{\omega_2, \omega_6\}) = \mathbb{P}(\{\omega_2\}) + \mathbb{P}(\{\omega_6\}) = 0.05 + 0.1 = 0.15.$$

De manière plus générale :

k	1	2	3	4	5
$\mathbb{P}(X=k)$	0.1	0.2	0.25	0.15	0.3

En posant
$$\mathbb{P}_X(k) := \mathbb{P}(X = k)$$
, on remarque :

$$\mathbb{P}_X(1) + \mathbb{P}_X(2) + \mathbb{P}_X(3) + \mathbb{P}_X(4) + \mathbb{P}_X(5) = 1$$
.

Ainsi, la fonction \mathbb{P}_X de $X(\Omega) = \{1, 2, 3, 4, 5\}$ dans [0; 1] peut être étendue en une application additive sur $2^{X(\Omega)}$ qui vérifie $\mathbb{P}_X(X(\Omega)) = 1$, c'est-à-dire en une probabilité sur $X(\Omega)$. On continue de la noter \mathbb{P}_X . Cette probabilité est appelée la loi de probabilité de X. Notons qu'on peut la caractériser simplement à l'aide d'un tableau car l'ensemble des réalisations possibles est fini.

Ainsi, la fonction \mathbb{P}_X de $X(\Omega)=\{1,2,3,4,5\}$ dans [0;1] peut être étendue en une application additive sur $2^{X(\Omega)}$ qui vérifie $\mathbb{P}_X(X(\Omega))=1$, c'est-à-dire en une probabilité sur $X(\Omega)$. On continue de la noter \mathbb{P}_X . Cette probabilité est appelée la loi de probabilité de X. Notons qu'on peut la caractériser simplement à l'aide d'un tableau car l'ensemble des réalisations possibles est fini.

On peut aussi utiliser la notation $\mathbb{P}X^{-1}$ car

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A) = \mathbb{P}\left(\{\omega \in \Omega : X(\omega) \in A\} = \mathbb{P}\left(X^{-1}(A)\right)\right).$$

Notation

Avec une écriture de type distribution, on a

$$\mathbb{P}_X = 0.1\delta_1 + 0.2\delta_2 + 0.25\delta_3 + 0.15\delta_4 + 0.3\delta_5 \,.$$

Notation

Avec une écriture de type distribution, on a

$$\mathbb{P}_X = 0.1\delta_1 + 0.2\delta_2 + 0.25\delta_3 + 0.15\delta_4 + 0.3\delta_5.$$

Traduction

La notation avec les distributions de Dirac signifie ici qu'il y a une masse (une probabilité) 0.1 en 1, une masse de 0.2 en 2, une masse de 0.25 en 3, une masse de 0.15 en 4 et une masse de 0.3 en 5.

Définition

De façon générale, soit X une variable aléatoire réelle de Ω dans \mathbb{R} . Soit I une partie de \mathbb{R} . La probabilité que X ait une réalisation dans I, notée $\mathbb{P}(X \in I)$, est la probabilité d'obtenir un résultat $\omega \in \Omega$ tel que $X(\omega) \in I$:

$$\mathbb{P}_X(I) := \mathbb{P}(X \in I) = \mathbb{P}(\{\omega : X(\omega) \in I\}).$$

Définition

De façon générale, soit X une variable aléatoire réelle de Ω dans \mathbb{R} . Soit I une partie de \mathbb{R} . La probabilité que X ait une réalisation dans I, notée $\mathbb{P}(X \in I)$, est la probabilité d'obtenir un résultat $\omega \in \Omega$ tel que $X(\omega) \in I$:

$$\mathbb{P}_X(I) := \mathbb{P}(X \in I) = \mathbb{P}(\{\omega : X(\omega) \in I\}).$$

Définition

La loi de probabilité de la variable aléatoire réelle X est l'application \mathbb{P}_X aussi notée $\mathbb{P}X^{-1}$ qui, à toute partie I de \mathbb{R} , fait correspondre la probabilité que X ait une réalisation dans I, $\mathbb{P}(\{\omega: X(\omega) \in I\})$ notée $\mathbb{P}(X \in I)$.

Définition

De façon générale, soit X une variable aléatoire réelle de Ω dans \mathbb{R} . Soit I une partie de \mathbb{R} . La probabilité que X ait une réalisation dans I, notée $\mathbb{P}(X \in I)$, est la probabilité d'obtenir un résultat $\omega \in \Omega$ tel que $X(\omega) \in I$:

$$\mathbb{P}_{X}(I) := \mathbb{P}(X \in I) = \mathbb{P}(\{\omega : X(\omega) \in I\}).$$

Définition

La loi de probabilité de la variable aléatoire réelle X est l'application \mathbb{P}_X aussi notée $\mathbb{P}X^{-1}$ qui, à toute partie I de \mathbb{R} , fait correspondre la probabilité que X ait une réalisation dans I, $\mathbb{P}(\{\omega: X(\omega) \in I\})$ notée $\mathbb{P}(X \in I)$.

C'est l'image réciproque par l'application X de la probabilité \mathbb{P} .

La fonction de répartition est un autre moyen de caractériser la loi de probabilité d'une variable aléatoire réelle. En effet, pour connaître la probabilité que X ait une réalisation dans une partie (borélienne) de \mathbb{R} , il suffit de connaître $\mathbb{P}(X \leq x)$ pour tout $x \in \mathbb{R}$.

La fonction de répartition est un autre moyen de caractériser la loi de probabilité d'une variable aléatoire réelle. En effet, pour connaître la probabilité que X ait une réalisation dans une partie (borélienne) de \mathbb{R} , il suffit de connaître $\mathbb{P}(X \leq x)$ pour tout $x \in \mathbb{R}$.

Donnons une justification succincte de ce fait. On peut montrer que la tribu des boréliens (la tribu raisonnable que l'on considère) est engendrée par la classe des intervalles semi-ouverts $]-\infty;x]$ où x parcourt l'ensemble des réels. Ainsi, l'on peut caractériser la probabilité de tout borélien si l'on connaît la probabilité de tous ces intervalles semi-ouverts.

La fonction de répartition est un autre moyen de caractériser la loi de probabilité d'une variable aléatoire réelle. En effet, pour connaître la probabilité que X ait une réalisation dans une partie (borélienne) de \mathbb{R} , il suffit de connaître $\mathbb{P}(X \leq x)$ pour tout $x \in \mathbb{R}$.

Donnons une justification succincte de ce fait. On peut montrer que la tribu des boréliens (la tribu raisonnable que l'on considère) est engendrée par la classe des intervalles semi-ouverts $]-\infty;x]$ où x parcourt l'ensemble des réels. Ainsi, l'on peut caractériser la probabilité de tout borélien si l'on connaît la probabilité de tous ces intervalles semi-ouverts.

L'avantage de la fonction de répartition est qu'il s'agit d'une fonction vérifiant de bonnes propriétés (que l'on voit subséquemment).

Définition

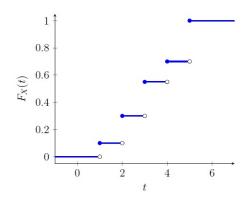
La fonction de répartition d'une variable aléatoire réelle X est la fonction réelle d'une variable réelle notée F_X (parfois F s'il n'y a pas d'ambiguïté) telle que

$$F_X(t) := \mathbb{P}_X(]-\infty;t]) = \mathbb{P}(X \le t) = \mathbb{P}(\{\omega : X(\omega) \le t\}).$$

Représentation graphique de la fonction de répartition F_X de l'exemple introductif :

Représentation graphique de la fonction de répartition F_X de l'exemple introductif :

Figure – Graphe de la fonction de répartition



Remarque

La dérivée (au sens des distributions) de F_X est

$$0.1\delta_1 + 0.2\delta_2 + 0.25\delta_3 + 0.15\delta_4 + 0.3\delta_5$$
,

Remarque

La dérivée (au sens des distributions) de F_X est

$$0.1\delta_1 + 0.2\delta_2 + 0.25\delta_3 + 0.15\delta_4 + 0.3\delta_5$$

d'après la formule des sauts.

Bornitude

Pour tout
$$t \in \mathbb{R}$$
, on a $0 \le F_X(t) \le 1$. De plus, $F_X(-\infty) := \lim_{t \to -\infty} F_X(t) = 0$ et $F_X(+\infty) := \lim_{t \to +\infty} F_X(t) = 1$.

Bornitude

Pour tout
$$t \in \mathbb{R}$$
, on a $0 \le F_X(t) \le 1$. De plus, $F_X(-\infty) := \lim_{t \to -\infty} F_X(t) = 0$ et $F_X(+\infty) := \lim_{t \to +\infty} F_X(t) = 1$.

Remarque

Pour tout $t \in \mathbb{R}$, on dispose de l'expression suivante de la probabilité de $]t; +\infty[$:

$$\mathbb{P}(X > t) = 1 - F_X(t).$$

Il est essentiel de faire attention à la manipulation des relations d'ordre. En effet, comme la fonction de répartition n'est pas nécessairement continue, il faut bien différencier $\mathbb{P}(X < t)$ et $\mathbb{P}(X \le t)$.

Il est essentiel de faire attention à la manipulation des relations d'ordre. En effet, comme la fonction de répartition n'est pas nécessairement continue, il faut bien différencier $\mathbb{P}(X < t)$ et $\mathbb{P}(X \le t)$.

Proposition

Pour tous les réels t_1 et t_2 avec $t_2 > t_1$, l'égalité suivante est vraie :

$$\mathbb{P}(t_1 < X \leq t_2) = F_X(t_2) - F_X(t_1)$$
.

Il est essentiel de faire attention à la manipulation des relations d'ordre. En effet, comme la fonction de répartition n'est pas nécessairement continue, il faut bien différencier $\mathbb{P}(X < t)$ et $\mathbb{P}(X \le t)$.

Proposition

Pour tous les réels t_1 et t_2 avec $t_2 > t_1$, l'égalité suivante est vraie :

$$\mathbb{P}(t_1 < X \leq t_2) = F_X(t_2) - F_X(t_1)$$
.

ATTENTION

Il faut ici considérer une probabilité de la forme $\mathbb{P}(a < X \leq b)$. En effet, la formule ne serait alors pas vraie pour peu que F_X présente une discontinuité en a ou en b.

Proposition

La fonction F_X est croissante.

Proposition

La fonction F_X est croissante.

Remarque

La fonction F_X n'est pas nécessairement strictement croissante. Par exemple, la fonction F_X de l'exemple introductif est constante par morceaux.

Proposition

La fonction F_X est càdlàg (continue à droite et limitée à gauche). En d'autres termes, pour tout $t \in \mathbb{R}$, $\lim_{s \to t^-} F_X(s)$ existe et

$$\lim_{s\to t^+} F_X(s) = F_X(t).$$

Proposition

La fonction F_X est càdlàg (continue à droite et limitée à gauche). En d'autres termes, pour tout $t \in \mathbb{R}$, $\lim_{s \to t^-} F_X(s)$ existe et $\lim_{s \to t^+} F_X(s) = F_X(t)$.

La limite à gauche de F en t, à savoir $\lim_{s\to t^-} F_X(s)$ est notée $F_X(t^-)$.

Correspondance

Théorème

Soit une fonction F croissante et càdlàg de $\mathbb R$ dans [0;1] telle que $F(-\infty)=0$ et $F(+\infty)=1$. Alors, il existe un espace fondamental Ω , muni d'une probabilité $\mathbb P$ et une variable aléatoire réelle X de Ω dans $\mathbb R$ telle que F est la fonction de répartition de la variable aléatoire réelle X.

Correspondance

Théorème

Soit une fonction F croissante et càdlàg de $\mathbb R$ dans [0;1] telle que $F(-\infty)=0$ et $F(+\infty)=1$. Alors, il existe un espace fondamental Ω , muni d'une probabilité $\mathbb P$ et une variable aléatoire réelle X de Ω dans $\mathbb R$ telle que F est la fonction de répartition de la variable aléatoire réelle X.

Ainsi, à l'étude des lois de probabilité des variables aléatoires réelles, on peut lui substituer l'étude des fonctions croissantes et càdlàg à valeurs dans [0;1] qui tendent vers 0 en $-\infty$ et vers 1 en $+\infty$.

Plan

- Motivations
- 2 Définition et Opérations
- 3 Loi d'une variable aléatoire réelle
- 4 Indépendance des variables aléatoires réelles

Définition de l'indépendance

Définition

Soient n variables aléatoires réelles X_1, \dots, X_n définies sur un même espace fondamental Ω muni d'une probabilité \mathbb{P} . On dit que X_1, \dots, X_n sont mutuellement indépendantes si pour toute partie S_1, \dots, S_n de \mathbb{R} , les évènements $\{X_1 \in S_1\}, \dots, \{X_n \in S_n\}$ sont mutuellement indépendants. En d'autres termes :

$$\mathbb{P}\left(X_{1} \in S_{1}, \cdots, X_{n} \in S_{n}\right) = \mathbb{P}\left(X_{1} \in S_{1}\right) \times \cdots \times \mathbb{P}\left(X_{n} \in S_{n}\right).$$

Exemple - 1

Exemple

On jette deux dés à six faces, un rouge et un bleu. Soient X_1 la variable aléatoire réelle qui a pour réalisation la face obtenue du dé rouge et X_2 la variable aléatoire réelle qui a pour réalisation la face obtenue du dé bleu. On a ici $\Omega = \{(i,j): i \in \llbracket 1; 6 \rrbracket, j \in \llbracket 1; 6 \rrbracket \}$. Et, $X_1(\Omega) = \{1,2,3,4,5,6\}$ et $X_2(\Omega) = \{1,2,3,4,5,6\}$. Alors les deux variables aléatoires réelles X_1 et X_2 sont indépendantes.

Exemple - 2

Exemple

Soit une population de N composants électroniques. Soit l'expérience aléatoire e qui consiste à tirer au hasard (avec remise) n individus de la population. Comme le tirage est avec remise, les n tirages au hasard d'un individu sont des expériences aléatoires mutuellement indépendantes. Pour $1 \le i \le n$, soit X_i la variable aléatoire réelle qui a pour réalisation l'impédance du i-ème composant tiré. Alors les n variables aléatoires réelles X_1, \cdots, X_n sont mutuellement indépendantes.

Contre-exemple

Contre-exemple

Soit une population de N hommes adultes vivant en France. Soit l'expérience aléatoire e qui consiste à tirer au hasard un individu de la population.

Contre-exemple

Contre-exemple

Soit une population de N hommes adultes vivant en France. Soit l'expérience aléatoire e qui consiste à tirer au hasard un individu de la population.

Soit X la variable aléatoire réelle qui a pour réalisation la taille de l'individu tiré, en centimètres. Soit Y la variable aléatoire réelle qui a pour réalisation le poids de l'individu tiré, en kilos. On devine aisément :

$$\mathbb{P}(Y \ge 90 \mid X \le 150) \ne \mathbb{P}(Y \ge 90 \mid X \ge 200)$$
.

Ainsi, les variables aléatoires réelles X et Y ne sont pas indépendantes.

Contre-exemple

Contre-exemple

Soit une population de N hommes adultes vivant en France. Soit l'expérience aléatoire e qui consiste à tirer au hasard un individu de la population.

Soit X la variable aléatoire réelle qui a pour réalisation la taille de l'individu tiré, en centimètres. Soit Y la variable aléatoire réelle qui a pour réalisation le poids de l'individu tiré, en kilos. On devine aisément :

$$\mathbb{P}(Y \ge 90 \mid X \le 150) \ne \mathbb{P}(Y \ge 90 \mid X \ge 200)$$
.

Ainsi, les variables aléatoires réelles X et Y ne sont pas indépendantes.

Évidemment, il est important de ne pas se contenter de l'intuition et de faire des statistiques rigoureuses pour établir la véracité de cette assertion.

Propriétés

Proposition

Soient n variables aléatoires réelles X_1, \dots, X_n définies sur un même espace fondamental Ω . On suppose que les variables aléatoires réelles sont mutuellement indépendantes. Soient n fonctions f_1, \dots, f_n . Alors, les n variables aléatoires réelles $f_1(X_1), \dots, f_n(X_n)$ sont mutuellement indépendantes.

Propriétés

Proposition

Soient n variables aléatoires réelles X_1, \dots, X_n définies sur un même espace fondamental Ω . On suppose que les variables aléatoires réelles sont mutuellement indépendantes. Soient n fonctions f_1, \dots, f_n . Alors, les n variables aléatoires réelles $f_1(X_1), \dots, f_n(X_n)$ sont mutuellement indépendantes.

Exemple

Soient X_1 , X_2 , X_3 et X_4 quatre variables aléatoires réelles mutuellement indépendantes. Alors, les variables aléatoires réelles X_1^2 , $|X_2|$, $\log |X_3|$ et e^{X_4} sont mutuellement indépendantes.