Un peu de vocabulaire Cercle trigonométrique Étude des fonctions trigonométriques Formules trigonométriques Angles remarquables

Bases Indispensables des Mathématiques Chapitre 1 : Trigonométrie

Julian Tugaut

Sommaire

- 1 Un peu de vocabulaire
 - Fonction périodique
 - Fonction bijective
- 2 Cercle trigonométrique
 - Cercle trigonométrique
 - Quelques définitions
- 3 Étude des fonctions trigonométriques
 - Fonctions sinus et arcsinus
 - Fonctions cosinus et arccosinus
 - Fonctions tangente et arctangente
- 4 Formules trigonométriques
 - Formules de bases
 - Formules d'addition
 - Formules de duplication
 - Formules de linéarisation
 - Formules de factorisation
- 5 Angles remarquables

Plan

- 1 Un peu de vocabulaire
 - Fonction périodique
 - Fonction bijective
- 2 Cercle trigonométrique
- 3 Étude des fonctions trigonométriques
- 4 Formules trigonométriques
- 5 Angles remarquables

Fonction périodique

Une fonction f sur \mathbb{R} est T-périodique si

$$\forall x \in \mathbb{R}, \quad f(x+T) = f(x).$$

Fonction périodique

Une fonction f sur \mathbb{R} est T-périodique si

$$\forall x \in \mathbb{R}, \quad f(x+T) = f(x).$$

On dit aussi que f est périodique de période T.

Fonction périodique

Une fonction f sur \mathbb{R} est T-périodique si

$$\forall x \in \mathbb{R}, \quad f(x+T) = f(x).$$

On dit aussi que f est périodique de période T.

Exemples

La fonction cosinus est 2π -périodique.

Fonction bijective

Soit un intervalle I de \mathbb{R} .

Soit f une fonction de I vers un ensemble E.

La fonction f est dite bijective de I dans E si et seulement si

- f est surjective : $\forall y \in E$, $\exists x \in I$ tel que f(x) = y.
- f est injective : $\forall x_1, x_2 \in I$, $x_1 \neq x_2$ implique $f(x_1) \neq f(x_2)$.

Fonction bijective

Soit un intervalle I de \mathbb{R} .

Soit f une fonction de I vers un ensemble E.

La fonction f est dite bijective de I dans E si et seulement si

- f est surjective : $\forall y \in E$, $\exists x \in I$ tel que f(x) = y.
- f est injective : $\forall x_1, x_2 \in I$, $x_1 \neq x_2$ implique $f(x_1) \neq f(x_2)$.

Exemple

La fonction $x \mapsto x^2$ est une bijection de \mathbb{R}_+ dans \mathbb{R}_+ mais elle n'est pas une bijection de \mathbb{R} dans \mathbb{R}_+ .

Plan

- 1 Un peu de vocabulaire
- 2 Cercle trigonométrique
 - Cercle trigonométrique
 - Quelques définitions
- 3 Étude des fonctions trigonométriques
- 4 Formules trigonométriques
- 6 Angles remarquables

Cercle trigonométrique

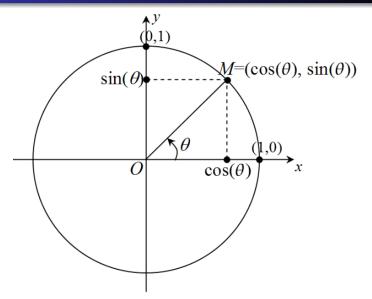


Figure - Cercle de centre O et de rayon 1

Radians

Un angle de θ radians intercepte sur le cercle unité un arc de longueur θ . 360 degrés valent 2π radians.

Radians

Un angle de θ radians intercepte sur le cercle unité un arc de longueur θ . 360 degrés valent 2π radians.

On note $M(\theta)$ le point d'intersection entre le cercle trigonométrique et la demi-droite issue de O et d'angle θ avec l'axe des abscisses.

Radians

Un angle de θ radians intercepte sur le cercle unité un arc de longueur θ . 360 degrés valent 2π radians.

On note $M(\theta)$ le point d'intersection entre le cercle trigonométrique et la demi-droite issue de O et d'angle θ avec l'axe des abscisses

Cosinus et sinus.

Le **cosinus** de l'angle θ correspond à l'**abscisse** du point $M(\theta)$. Le **sinus** de l'angle θ correspond à l'**ordonnée** du point $M(\theta)$.

Les coordonnées du point $M(\theta)$

On a :
$$M(\theta) = (\cos(\theta), \sin(\theta)) = \cos(\theta)\overrightarrow{u_0} + \sin(\theta)\overrightarrow{v_0} =: \overrightarrow{u_\theta}$$
.

Les coordonnées du point $M(\theta)$

On a :
$$M(\theta) = (\cos(\theta), \sin(\theta)) = \cos(\theta)\overrightarrow{u_0} + \sin(\theta)\overrightarrow{v_0} =: \overrightarrow{u_\theta}$$
.

Égalité importante

Théorème de Pythagore : $\cos^2(\theta) + \sin^2(\theta) = 1$.

Les coordonnées du point $M(\theta)$

On a:
$$M(\theta) = (\cos(\theta), \sin(\theta)) = \cos(\theta)\overrightarrow{u_0} + \sin(\theta)\overrightarrow{v_0} =: \overrightarrow{u_\theta}$$
.

Égalité importante

Théorème de Pythagore : $\cos^2(\theta) + \sin^2(\theta) = 1$.

Tangente

La tangente de l'angle θ est le rapport du sinus sur le cosinus :

$$\tan(\theta) := \frac{\sin(\theta)}{\cos(\theta)} \quad \text{si} \quad \cos(\theta) \neq 0 \,.$$

Plan

- 1 Un peu de vocabulaire
- Cercle trigonométrique
- Étude des fonctions trigonométriques
 - Fonctions sinus et arcsinus
 - Fonctions cosinus et arccosinus
 - Fonctions tangente et arctangente
- 4 Formules trigonométriques
- 5 Angles remarquables

• La fonction sinus est définie sur \mathbb{R} .

- La fonction sinus est définie sur \mathbb{R} .
- Elle est à valeurs dans l'intervalle [-1; 1].

- La fonction sinus est définie sur \mathbb{R} .
- Elle est à valeurs dans l'intervalle [-1; 1].
- La fonction sinus est 2π -périodique.

- La fonction sinus est définie sur \mathbb{R} .
- Elle est à valeurs dans l'intervalle [-1; 1].
- La fonction sinus est 2π -périodique.

Bijection

La fonction sinus n'est pas bijective de $\mathbb R$ dans [-1;1]. Mais, elle réalise une bijection de $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ dans [-1;1]. On peut alors définir sa fonction réciproque,

arcsin:
$$[-1;1] \rightarrow \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$$

 $x \mapsto \arcsin(x)$.

Par définition, sin(arcsin(x)) = x pour tout $x \in [-1; 1]$.

Par définition, $\sin(\arcsin(x)) = x$ pour tout $x \in [-1; 1]$.

Toutefois, la formule réciproque $\arcsin(\sin(x)) = x$ n'est vraie que $\sin x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Par définition, $\sin(\arcsin(x)) = x$ pour tout $x \in [-1; 1]$.

Toutefois, la formule réciproque $\arcsin(\sin(x)) = x$ n'est vraie que $\sin x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Exemples

Si
$$x=\frac{\sqrt{3}}{2}$$
, $\arcsin(x)=\frac{\pi}{3}$. Et, $\sin(\arcsin(x))=\sin(\frac{\pi}{3})=\frac{\sqrt{3}}{2}=x$. Mais, si $x=\frac{\pi}{3}+4\pi$, $\sin(x)=\frac{\sqrt{3}}{2}$. Et, $\arcsin(\sin(x))=\arcsin(\frac{\sqrt{3}}{2})=\frac{\pi}{3}\neq x$.

Par définition, $\sin(\arcsin(x)) = x$ pour tout $x \in [-1; 1]$.

Toutefois, la formule réciproque $\arcsin(\sin(x)) = x$ n'est vraie que $\sin x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Exemples

Si
$$x=\frac{\sqrt{3}}{2}$$
, $\arcsin(x)=\frac{\pi}{3}$. Et, $\sin\left(\arcsin(x)\right)=\sin\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}=x$. Mais, si $x=\frac{\pi}{3}+4\pi$, $\sin(x)=\frac{\sqrt{3}}{2}$. Et, $\arcsin\left(\sin(x)\right)=\arcsin\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}\neq x$.

Remarque : $\arcsin(\sin(x)) = x + 2k\pi$, où k dépend de x.

Représentations graphiques

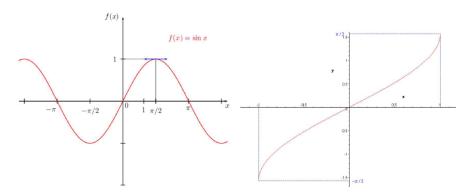


Figure – Graphes des fonctions sinus (à gauche) et arcsinus (à droite).

• La fonction cosinus est définie sur \mathbb{R} .

- La fonction cosinus est définie sur \mathbb{R} .
- Elle est à valeurs dans l'intervalle [-1; 1].

- La fonction cosinus est définie sur \mathbb{R} .
- Elle est à valeurs dans l'intervalle [-1; 1].
- La fonction cosinus est 2π -périodique.

- La fonction cosinus est définie sur \mathbb{R} .
- Elle est à valeurs dans l'intervalle [-1; 1].
- La fonction cosinus est 2π -périodique.

Bijection

La fonction cosinus n'est pas bijective de $\mathbb R$ dans [-1;1]. Mais, elle réalise une bijection de $[0;\pi]$ dans [-1;1].

On peut alors définir sa fonction réciproque,

$$arccos: [-1;1] \rightarrow [0;\pi]$$
 $x \mapsto arccos(x)$.

Par définition, $\cos(\arccos(x)) = x$ pour tout $x \in [-1; 1]$.

Par définition, $\cos(\arccos(x)) = x$ pour tout $x \in [-1; 1]$.

Toutefois, la formule réciproque $\arccos(\cos(x)) = x$ n'est vraie que si $x \in [0; \pi]$.

Par définition, $\cos(\arccos(x)) = x$ pour tout $x \in [-1; 1]$.

Toutefois, la formule réciproque $\arccos(\cos(x)) = x$ n'est vraie que si $x \in [0; \pi]$.

Exemples

Si
$$x=\frac{\sqrt{3}}{2}$$
, $\arccos(x)=\frac{\pi}{6}$. Et, $\cos\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}=x$. Mais, si $x=\frac{\pi}{6}+4\pi$, $\cos(x)=\frac{\sqrt{3}}{2}$. Et, $\arccos\left(\cos(x)\right)=\arccos\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}\neq x$.

Par définition, $\cos(\arccos(x)) = x$ pour tout $x \in [-1; 1]$.

Toutefois, la formule réciproque $\arccos(\cos(x)) = x$ n'est vraie que si $x \in [0; \pi]$.

Exemples

Si
$$x = \frac{\sqrt{3}}{2}$$
, $\arccos(x) = \frac{\pi}{6}$. Et, $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} = x$. Mais, si $x = \frac{\pi}{6} + 4\pi$, $\cos(x) = \frac{\sqrt{3}}{2}$. Et, $\arccos\left(\cos(x)\right) = \arccos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \neq x$.

Remarque : $arccos(cos(x)) = x + 2k\pi$, où k dépend de x.

Représentations graphiques

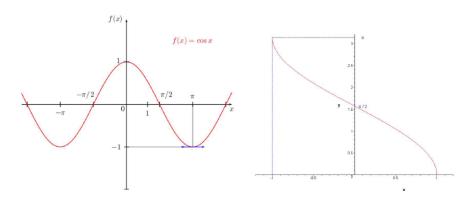


Figure – Graphes des fonctions cosinus (à gauche) et arccosinus (à droite).

Fonctions tan et arctan

• La fonction tangente est définie sur $\mathbb{R}\setminus \{\frac{\pi}{2}+k\pi\,;\,k\in\mathbb{Z}\}.$

Fonctions tan et arctan

- La fonction tangente est définie sur $\mathbb{R}\setminus \{\frac{\pi}{2}+k\pi\; ;\; k\in\mathbb{Z}\}.$
- Elle est à valeurs dans l'intervalle ouvert $]-\infty$; $+\infty[=\mathbb{R}.$

Fonctions tan et arctan

- La fonction tangente est définie sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi\,;\,k\in\mathbb{Z}\}.$
- Elle est à valeurs dans l'intervalle ouvert $]-\infty$; $+\infty[=\mathbb{R}.$
- La fonction tangente est π -périodique.

Fonctions tan et arctan

- La fonction tangente est définie sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi\;;\;k\in\mathbb{Z}\}.$
- Elle est à valeurs dans l'intervalle ouvert $]-\infty$; $+\infty[=\mathbb{R}.$
- La fonction tangente est π -périodique.

Bijection

La fonction tangente n'est pas bijective de $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\;;\;k\in\mathbb{Z}\right\}$ dans \mathbb{R} . Mais, elle réalise une bijection de $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ dans \mathbb{R} . On peut alors définir sa fonction réciproque,

$$\arctan: \mathbb{R} \to \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$
 $x \mapsto \arctan(x).$

Par définition, tan(arctan(x)) = x pour tout $x \in \mathbb{R}$.

Par définition, tan(arctan(x)) = x pour tout $x \in \mathbb{R}$.

Toutefois, la formule réciproque arctan $(\tan(x)) = x$ n'est vraie que si $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$.

Par définition, tan(arctan(x)) = x pour tout $x \in \mathbb{R}$.

Toutefois, la formule réciproque arctan $(\tan(x)) = x$ n'est vraie que si $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$.

Exemples

Si
$$x=\sqrt{3}$$
, $\arctan(x)=\frac{\pi}{3}$. Et, $\tan\left(\frac{\pi}{3}\right)=\sqrt{3}=x$. Mais, si $x=\frac{\pi}{3}+\pi$, $\tan(x)=\sqrt{3}$. Et, $\arctan\left(\tan(x)\right)=\arctan\left(\sqrt{3}\right)=\frac{\pi}{3}\neq x$.

Par définition, tan(arctan(x)) = x pour tout $x \in \mathbb{R}$.

Toutefois, la formule réciproque $\arctan(\tan(x)) = x$ n'est vraie que si $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$.

Exemples

Si
$$x=\sqrt{3}$$
, $\arctan(x)=\frac{\pi}{3}$. Et, $\tan\left(\frac{\pi}{3}\right)=\sqrt{3}=x$. Mais, si $x=\frac{\pi}{3}+\pi$, $\tan(x)=\sqrt{3}$. Et, $\arctan\left(\tan(x)\right)=\arctan\left(\sqrt{3}\right)=\frac{\pi}{3}\neq x$.

Remarque : $arctan(tan(x)) = x + k\pi$, où k dépend de x.

Représentations graphiques

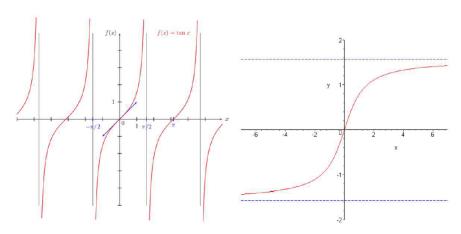


Figure – Graphes des fonctions tangente (à gauche) et arctangente (à droite).

Formules de bases Formules d'addition Formules de duplication Formules de linéarisatior Formules de factorisation

Plan

- 1 Un peu de vocabulaire
- 2 Cercle trigonométrique
- 3 Étude des fonctions trigonométriques
- 4 Formules trigonométriques
 - Formules de bases
 - Formules d'addition
 - Formules de duplication
 - Formules de linéarisation
 - Formules de factorisation
- 5 Angles remarquables

Parité et imparité

La fonction cosinus est paire : cos(-x) = cos(x).

Parité et imparité

La fonction cosinus est paire : $\cos(-x) = \cos(x)$. Les fonctions sinus et tangente sont impaires : $\sin(-x) = -\sin(x)$ et $\tan(-x) = -\tan(x)$.

Parité et imparité

La fonction cosinus est paire : cos(-x) = cos(x). Les fonctions sinus et tangente sont impaires : sin(-x) = -sin(x) et tan(-x) = -tan(x).

Liens entre sinus et cosinus

Pour tout $x \in \mathbb{R}$, on a

$$\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$$
 et $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$.

Parité et imparité

La fonction cosinus est paire : cos(-x) = cos(x). Les fonctions sinus et tangente sont impaires : sin(-x) = -sin(x) et tan(-x) = -tan(x).

Liens entre sinus et cosinus

Pour tout $x \in \mathbb{R}$, on a

$$\cos\left(\frac{\pi}{2}-x\right)=\sin(x)$$
 et $\sin\left(\frac{\pi}{2}-x\right)=\cos(x)$.

On en déduit par ailleurs : $\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan(x)}$.

Symétrie par rapport à la droite $(x = \frac{\pi}{2})$

Pour tout $x \in \mathbb{R}$, on a

$$\sin(\pi - x) = \sin(x)$$
 et $\cos(\pi - x) = -\cos(x)$.

Symétrie par rapport à la droite $(x = \frac{\pi}{2})$

Pour tout $x \in \mathbb{R}$, on a

$$sin(\pi - x) = sin(x)$$
 et $cos(\pi - x) = -cos(x)$.

On en déduit par ailleurs :

$$\tan(\pi - x) = -\tan(x).$$

Symétrie par rapport à la droite $(x=\frac{\pi}{2})$

Pour tout $x \in \mathbb{R}$, on a

$$sin(\pi - x) = sin(x)$$
 et $cos(\pi - x) = -cos(x)$.

On en déduit par ailleurs :

$$\tan(\pi - x) = -\tan(x).$$

Autres formules

$$\tan(\pi + x) = \tan(x)$$
, $\sin(n\pi + x) = (-1)^n \sin(x)$, $\cos(n\pi + x) = (-1)^n \cos(x)$ et $\tan(n\pi + x) = \tan(x)$.

Formules d'addition

Formules principales

Pour tous les réels x et y, on a :

$$\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x).$$

Formules d'addition

Formules principales

Pour tous les réels x et y, on a :

$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

$$sin(x + y) = sin(x)cos(y) + sin(y)cos(x).$$

Autres formules

$$cos(x - y) = cos(x) cos(y) + sin(x) sin(y),
sin(x - y) = sin(x) cos(y) - sin(y) cos(x),
tan(x + y) = $\frac{tan(x) + tan(y)}{1 - tan(x) tan(y)}$, $tan(x - y) = \frac{tan(x) - tan(y)}{1 + tan(x) tan(y)}$.$$

Formules d'addition

Formules principales

Pour tous les réels x et y, on a :

$$cos(x + y) = cos(x)cos(y) - sin(x)sin(y)$$

$$sin(x + y) = sin(x)cos(y) + sin(y)cos(x).$$

Autres formules

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y), \sin(x - y) = \sin(x)\cos(y) - \sin(y)\cos(x), \tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}, \tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}.$$

Ces formules se déduisent des deux précédentes.

Duplication du cosinus

$$\cos(2x) = \cos^2(x) - \sin^2(x).$$

Duplication du cosinus

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

(en nous servant de la relation $\cos^2(x) + \sin^2(x) = 1$.)

Duplication du cosinus

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

(en nous servant de la relation $\cos^2(x) + \sin^2(x) = 1$.)

Duplication du sinus

$$\sin(2x) = 2\cos(x)\sin(x).$$

Duplication du cosinus

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

(en nous servant de la relation $\cos^2(x) + \sin^2(x) = 1$.)

Duplication du sinus

$$\sin(2x) = 2\cos(x)\sin(x).$$

Duplication de la tangente

$$\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}.$$

Formules de linéarisation

Linéarisation de $\cos^2(x)$ et de $\sin^2(x)$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$
 et $\sin^2(x) = \frac{1 - \cos(2x)}{2}$.

Formules de bases Formules d'addition Formules de duplication Formules de linéarisation Formules de factorisation

Formules de linéarisation

Linéarisation de $\cos^2(x)$ et de $\sin^2(x)$

$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$
 et $\sin^2(x) = \frac{1 - \cos(2x)}{2}$.

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2},$$

$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2},$$

$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$
et
$$\tan^2(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}.$$

$$cos(x) + cos(y) = 2 cos\left(\frac{x+y}{2}\right) cos\left(\frac{x-y}{2}\right)$$
,

$$cos(x) + cos(y) = 2 cos\left(\frac{x+y}{2}\right) cos\left(\frac{x-y}{2}\right)$$
,

Astuce:
$$x = \frac{x+y}{2} + \frac{x-y}{2}$$
 et $y = \frac{x+y}{2} - \frac{x-y}{2}$.

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right),$$
$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right),$$

Astuce :
$$x = \frac{x+y}{2} + \frac{x-y}{2}$$
 et $y = \frac{x+y}{2} - \frac{x-y}{2}$.

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right),$$

$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right),$$

$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right),$$

Astuce:
$$x = \frac{x+y}{2} + \frac{x-y}{2}$$
 et $y = \frac{x+y}{2} - \frac{x-y}{2}$.

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right),$$

$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right),$$

$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right),$$

$$\sin(x) - \sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right),$$

Astuce :
$$x = \frac{x+y}{2} + \frac{x-y}{2}$$
 et $y = \frac{x+y}{2} - \frac{x-y}{2}$.

Plan

- 1 Un peu de vocabulaire
- 2 Cercle trigonométrique
- 3 Étude des fonctions trigonométriques
- 4 Formules trigonométriques
- 6 Angles remarquables

Angles (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angles (degrés)	0	30	45	60	90
Sinus					
Cosinus					
Tangente					

Angles (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angles (degrés)	0	30	45	60	90
Sinus	0				1
Cosinus	1				0
Tangente	0				$+\infty$

Angles (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angles (degrés)	0	30	45	60	90
Sinus	0		$\frac{\sqrt{2}}{2}$		1
Cosinus	1		$\frac{\sqrt{2}}{2}$		0
Tangente	0		1		$+\infty$

Angles (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Angles (degrés)	0	30	45	60	90
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$+\infty$