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Neural networks

 

i

We are told these, but much bigger, will run everything. . .
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Neural networks

. . . because they work really well for:

i) image recognition, see e.g. Huang et. al. [12],

ii) speech recognition, e.g. Dahl et. al. [5],

iii) numerical solution to PDEs, e.g. Vidales et. al. [19],

iv) dynamic hedging in finance, e.g. [1],

v) . . .
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Until they don’t

From Goodfellow et. al. [7].
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What is a neural net?

Parametric description of a function.

Fix

i) an activation function ϕ : R → R,
ii) number of layers L ∈ N,
iii) the size of input to each layer k given by lk ∈ N, k = 0, . . . , L− 1,

iv) the size of the output layer lL ∈ N,
v) the space of parameters

Π = (Rl1×l0 × Rl1)× (Rl2×l1 × Rl2)× · · ·× (RlL×lL−1 × RlL) ,

vi) the network parameters

Ψ = ((α1,β1), . . . , (αL,βL)) ∈ Π .
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The neural network

Ψ = ((α1,β1), . . . , (αL,βL)) ∈ Π

now defines a function RΨ : Rl0 → RlL given recursively, for x0 ∈ Rl0 , by
z0 ∈ Rl0 , by

(RΨ)(z0) = αLzL−1 + βL , zk = ϕlk (αkzk−1 + βk) , k = 1, . . . , L− 1 .

Here ϕlk : Rlk → Rlk is given, for z = (z1, . . . , zlk )
⊤ ∈ Rlk , by

ϕlk (z) = (ϕ(z1), . . . ,ϕ(zl))
⊤.
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Example: One-hidden-layer network

For z ∈ Rl0 , its reconstruction can be written as

(RΨn)(z) = α2ϕl1(α1z) =
1

n

n󰁛

i=1

ciϕ(α
1
i · z) ,

where for i ∈ {1, . . . , l0}, its i-th row by α1
i ∈ R1×d . Let

α2 = ( c1n , · · · ,
cn
n )

⊤, where ci ∈ R. The neural network is

Ψn =
󰀓
(α1,β1), (α2,β2)

󰀔
.
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Universal approximation theorem

If an activation function ϕ is bounded, continuous and non-constant, then
for any compact set K ⊂ Rd the set

󰀝
(RΨ) : Rd → R : (RΨ) given above

with L = 2 for some n ∈ N,α2
j ,β

1
j ∈ R,α1

j ∈ Rd , j = 1, . . . , n

󰀞

is dense in the space of continuous functions from K to R. See e.g.
Hornik [11, Theorem 2].
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PDE approximation without the curse of dimensionality I

Consider 󰀫
∂tv + tr[a ∂2

xv ] + b∂xv = 0 in [0,T )× Rd ,

v(T , ·) = g on Rd ,

where a(x) = 1
2diag(x)σ [diag(x)σ]⊤ and b(x) = diag(x)µ. Let (Bt)t∈[0,T ]

be an Rd ′
-valued Wiener process. The SDE arising in the Feynman–Kac

representation for v(t, x) is

dX i
t = X i

tµ
i dt + X i

t

d ′󰁛

j=1

σij dB j
t , t ∈ [t,T ] ,Xt = x

and its solution is

X i
T = x i exp

󰀗󰀕
µi − 1

2

d ′󰁛

j=1

(σij)2
󰀖
(T − t) +

d ′󰁛

j=1

σij(B j
T − B j

t )

󰀘
:= W i

tx
i .
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PDE approximation without the curse of dimensionality II
One-hidden-layer NN denoted Φ s.t. g(x) = (RΦ)(x).

v(t, x) = E [g(Wtx)] ≈
1

N

N󰁛

k=1

g(Wk
t x) .

See series of works by Grohs, Hornung, Jentzen and von
Wurstemberger [8] and Jentzen, Salimova and Welti [13].

Note for later that

1

N

N󰁛

k=1

󰀃
RΦ

󰀄
(Wkx) =

󰁝

Rd

󰀃
RΦ

󰀄
(y x)mN(dy) ,

where

mN :=
1

N

N󰁛

k=1

δWk
.

In fact

v(t, x) =

󰁝

Rd

󰀃
RΦ

󰀄
(y x)m∗(dy) where m∗ is the law of X t,x

T .
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What is understood in deep learning

i) Representation theorems for various settings,

ii) Deep networks are a way to reduce number of parameters ,

iii) . . .
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What is not so well understood in deep learning

i) Why gradient algorithms in non-convex optimization do the job?
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What is not so well understood in deep learning

ii) How come massively over-parametrized models generalize well?

See Hastie, Montanari, Rosset and Tibshirani [10].
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Non-covex minimization problem

With ϕ̂(x , z) = βϕ(α · z) for x = (α,β) ∈ (R×RD)n, we should minimize,

(R× RD)n ∋ x 󰀁→
󰁝

R×RD

Φ

󰀕
y − 1

n

n󰁛

i=1

ϕ̂(x i , z)

󰀖
ν(dy , dz)

󰁿 󰁾󰁽 󰂀
=:F (x)

+
σ̄2

2
|x |2󰁿󰁾󰁽󰂀

=:U(x)

,

which is non-convex.

Gradient descent with “learning rate” τ > 0:

x ik+1 = x ik − τ∇x i

󰀗
F (xk) +

σ̄2

2
U(xk)

2

󰀘
, i = 1, . . . , n .

Here x i = (αi ,βi ) ∈ R× RD .
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Approximation with gradient descent

In practice noisy, regularized, gradient descent algorithms are used:

x ik+1 = x ik + τ

󰁝

R×RD

Φ̇

󰀕
y − 1

n

n󰁛

j=1

ϕ̂(x jk , z)

󰀖
∇x i ϕ̂(x

i
k , z) ν(dy , dz)

− σ̄2

2
∇x iU(x ik) + σ̄

√
τξik ,

where (yk , zk)k∈N are i.i.d. samples from ν and ξik are i.i.d. samples from
N(0, Id).

Taking weak limit gives

dX i
t =

󰀗 󰁝

R×RD

Φ̇

󰀕
y − 1

n

n󰁛

j=1

ϕ̂(X j
t , z)

󰀖
∇x i ϕ̂(X

i
t , z) ν(dy , dz)

− σ̄2

2
∇x iU(X i

t )

󰀘
dt + σdW i

t ,
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Mean-field limit and convexity

Write
1

n

n󰁛

i=1

ϕ̂(x i , z) =

󰁝

Rd

ϕ̂(x , z)mn(dx) as n → ∞ .

The search for the optimal measure m∗ ∈ P(Rd) amounts to minimizing

P(Rd) ∋ m 󰀁→
󰁝

R×RD

Φ

󰀕
y −

󰁝

Rd

ϕ̂(x , z)m(dx)

󰀖
ν(dy , dz) =: F (m),

which is convex (as long as Φ) i.e

F ((1− α)m + αm′) ≤ (1− α)F (m) + αF (m′) for all α ∈ [0, 1] .

Observed in the pioneering works of Mei, Misiakiewicz and Montanari [14],
Chizat and Bach [4] as well as Rotskoff and Vanden-Eijnden [17].
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Derivation of MFLD I

FN(x) = F

󰀣
1

N

N󰁛

i=1

δx i

󰀤
=

󰁝

Rd

Φ

󰀕
y − 1

N

N󰁛

j=1

ϕ̂(x j , z)

󰀖
ν(dz , dy).

Hence

∂x iF
N(x1, . . . , xN) = − 1

N

󰁝

Rd

Φ̇

󰀕
y − 1

N

N󰁛

j=1

ϕ̂(x j , z)

󰀖
∇ϕ̂(x i , z)ν(dz , dy) ,

On the level of the particle system

dX i
t =

󰀗 󰁝

R×RD

Φ̇

󰀕
y − 1

n

n󰁛

j=1

ϕ̂(X j
t , z)

󰀖
∇ϕ̂(X i

t , z) ν(dy , dz)

− σ̄2

2
∇U(X i

t )

󰀘
dt + σdW i

t ,
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Derivation of MFLD II

Then

dX i
t = −

󰀓
N∂xiF

N(X 1
t , . . . ,X

N
t ) +

σ2

2
∇U(X i

t )
󰀔
dt + σdW i

t .

We expect to have, as n → ∞,

󰀻
󰁁󰀿

󰁁󰀽

dXt = −
󰀕
DmF (mt ,Xt) +

σ2

2
∇U(Xt)

󰀖
dt + σdWt t ∈ [0,∞)

mt = Law(Xt) t ∈ [0,∞) .

Fokker–Planck

∂tm = ∇ ·
󰀕󰀓

DmF (m, ·) + σ2

2
∇U

󰀔
m +

σ2

2
∇m

󰀖
on (0,∞)× Rd .
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Measure derivatives

Example: If x , y ∈ Rd then ∇x〈x , y〉 = y .

Example: v(m) =
󰁕
Rd f (x)m(dx) = 〈m, f 〉. So perhaps we want δv

δm = f ?

Definition 1 (Functional derivative)

For V : P → R we say the functional derivative exists if there is a
continuous map δV

δm : P × Rd → R such that for any m,m′ ∈ P

lim
s↘0

V ((1− s)m + sm′)− V (m)

s
=

󰁝

Rd

δV

δm
(m, y)d(m′ −m)(y) .

Indeed for v(m) = 〈m, f 〉 we have

lim
s↘0

〈(1− s)m + sm〉 − 〈m, f 〉
s

= 〈m′ −m, f 〉 =
󰁝

Rd

f (y) d(m′ −m)(y) .

So δv
δm = f (up to a constant, normalize so that functional derivative

integrates to 0).
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Measure derivatives

Definition 2 (Intrinsic derivative)

For V : P2 → R we say the intrinsic derivative exists if δV
δµ : P2 × Rd → R

is continuously differentiable in the 2nd variable and we say the function
DmV : P2 × Rd → R given by

DmV (m, x) := ∇x
δV

δm
(m, x)

is the intrinsic derivative.

Indeed for v(m) = 〈m, f 〉 we have

Dmv(m, x) = ∇x f (x) .
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Variational Perspective
Given a potential function f : Rd → R the overdamped Langevin
dynamics (LD) reads

dXt = −∇f (Xt)dt + σdWt ,

i) The solution to LD under mild conditions admits a unique invariant
measure mσ,∗ with density

mσ,∗(x) =
1

Z
exp

󰀕
− 2

σ2
f (x)

󰀖
, ∀x ∈ Rd , Z :=

󰁝

Rd

exp

󰀕
− 2

σ2
f (x)

󰀖
dx .

ii) The dynamic LD can be viewed as the path of a randomised
continuous time gradient descent algorithm.

Note mσ,∗ is the unique minimiser of the free energy function

V σ(m) :=

󰁝

Rd

f (x)m(dx) +
σ2

2
H(m)

over all probability measure m,
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Energy functional

Fix a Gibbs measure g :

g(x) = e−U(x) with U s.t.

󰁝

Rd

e−U(x) dx = 1 .

Define the relative entropy H for m ∈ P(Rd) as:

H(m) :=

󰀻
󰁁󰀿

󰁁󰀽

󰁝

Rd

m(x) log

󰀕
m(x)

g(x)

󰀖
dx if m is a.c. w.r.t. Lebesgue measure ,

∞ otherwise .

We will study V σ(m) := F (m) + σ2

2 H(m).

dXt = −
󰀕
∇x

δF

δm
(mt ,Xt) +

σ2

2
∇U(Xt)

󰀖
dt + σdWt t ∈ [0,∞) .
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Assumptions I

Assumption 1

F ∈ C1 is convex and bounded from below.

Assumption 2

The function U : Rd → R belongs to C∞. Further,

i) there exist constants CU > 0 and C ′
U ∈ R such that

∇U(x) · x ≥ CU |x |2 + C ′
U for all x ∈ Rd .

ii) ∇U is Lipschitz continuous.

23 / 46



Convergence when σ ↘ 0

Proposition 3

Assume that F is continuous in the topology of weak convergence. Then
the sequence of functions V σ = F + σ2

2 H converges in the sense of
Γ-convergence to F as σ ↘ 0. In particular, given a minimizer m∗,σ of
V σ, we have

lim sup
σ→0

F (m∗,σ) = inf
m∈P2(Rd )

F (m).

Proof outline: To get lim infσn→0 V
σn(mn) ≥ F (m) use l.s.c. of entropy.

To get lim supσn→0 V
σn(mn) ≤ F (m) smooth with heat kernel and use

assumption of quadratic growth of U.
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Characterization of the minimizer

Proposition 4

Under Assumption 1 and 2, the function V σ has a unique minimizer
m∗ ∈ P2(Rd) which is absolutely continuous with respect to Lebesgue
measure and satisfies

δF

δm
(m∗, ·) + σ2

2
log(m∗) +

σ2

2
U is a constant, m∗ − a.s.

On the other hand if m′ ∈ Iσ where

Iσ :=

󰀝
m ∈ P(Rd) :

δF

δm
(m, ·) + σ2

2
log(m) +

σ2

2
U is a constant

󰀞

then m′ = argminm∈P(Rd ) V
σ.
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Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m̄ s.t. V (m̄) < ∞,

S :=

󰀝
m :

σ2

2
H(m) ≤ V (m̄)− inf

m′∈P(Rd )
F (m′)

󰀞
.

Since V is l.s.c. it attains its minimum on S, say m∗ so V (m∗) ≤ V (m)
for all m ∈ S.

Note that m̄ ∈ S. If m /∈ S then

V (m∗) ≤ V (m̄) ≤ σ2

2
H(m) + inf

m′∈P(Rd )
F (m′) ≤ V (m)

so m∗ is global minimum of V . Since V is strictly convex it is unique.

26 / 46



Step 2 (sufficient condition): Assume m∗ ∈ Iσ and show that for any
ε > 0 and m ∈ P(Rd) you have

V ((1− εm∗) + εm)− V (m∗)

ε

≥
󰁝

Rd

󰀕
δF

δm
(m∗, ·) + σ2

2
logm∗ +

σ2

2
U

󰀖
(m −m∗)(dx) = 0 .

Step 3 (necessary condition): similar to step 2
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Connection to gradient flow

If m∗ ∈ Iσ then

δF

δm
(m∗, ·) + σ2

2
log(m∗) +

σ2

2
U is a constant, m∗ − a.s.

and so (formally, apply ∇, multiply by m∗, apply ∇· )

∇ ·
󰀕󰀓

DmF (m
∗, ·) + σ2

2
∇U

󰀔
m∗ +

σ2

2
∇m∗

󰀖
= 0

and so it is (formally) the stationary solution of

∂tm = ∇ ·
󰀕󰀓

DmF (m, ·) + σ2

2
∇U

󰀔
m +

σ2

2
∇m

󰀖
on (0,∞)× Rd ,

and

m∗(x) =
1

Z
exp

󰀕
− 2

σ2

󰀕
δF

δm
(m∗, x) + U(x)

󰀖󰀖
,
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Mean-field Langevin equation

We see that if
󰀻
󰁁󰀿

󰁁󰀽

dXt = −
󰀕
DmF (mt ,Xt) +

σ2

2
∇U(Xt)

󰀖
dt + σdWt t ∈ [0,∞)

mt = Law(Xt) t ∈ [0,∞)

(1)

has a solution then (mt)t≥0 solves the Fokker–Planck equation

∂tm = ∇ ·
󰀕󰀓

DmF (m, ·) + σ2

2
∇U

󰀔
m +

σ2

2
∇m

󰀖
on (0,∞)× Rd .

Key challenges in studying invariant measure(s)

◮ Drift not of convolutional form Carillo, McCann Vilani [2] Otto [15],
Tugaut [18]

◮ To establish the link with optimisation need result to hold for all σ
Bogachev, Roeckner, Shaposhnikov [?] and Eberle, Guillin Zimmer [6]
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Assumptions II

Assumption 5

Assume that the intrinsic derivative DmF : P(Rd)× Rd → Rd of the
function F : P(Rd) → R exists and satisfies the following conditions:

i) DmF is bounded and Lipschitz continuous, i.e. there exists CF > 0
such that for all x , x ∈ Rd and m,m′ ∈ P2(Rd)

|DmF (m, x)− DmF (m
′, x ′)| ≤ CF

󰀃
|x − x ′|+W2(m,m′)

󰀄
.

ii) DmF (m, ·) ∈ C∞(Rd) for all m ∈ P(Rd).

iii) ∇DmF : P(Rd)× Rd → Rd × Rd is jointly continuous.
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Proposition 6

If Assumptions 2 and 5 hold and if m0 ∈ P2(Rd) then:

i) the mean field Langevin SDE (1) has a unique strong solution,

ii) given m0,m
′
0 ∈ P2(Rd) and denoting by (mt)t≥0, (m

′
t)t≥0 the

marginal laws of the corresponding solutions to (1), we have for all
t > 0 that there is a constant C > 0 such that

W2(mt ,m
′
t) ≤ CW2(m0,m

′
0) .
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Theorem 3
Let m0 ∈ P2(Rd). Under Assumption 2 and 5, we have for any t > s > 0

V σ(mt)− V σ(ms)

= −
󰁝 t

s

󰁝

Rd

󰀏󰀏󰀏󰀏DmF (mr , x) +
σ2

2

∇mr

mr
(x) +

σ2

2
∇U(x)

󰀏󰀏󰀏󰀏
2

mr (x) dx dr .

Proof outline: Follows from a priori estimates and regularity results on the
nonlinear Fokker–Planck equation and the chain rule for flows of measures.
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Convergence

Theorem 4
Let Assumption 1, 2 and 5 hold true and m0 ∈ ∪p>2Pp(Rd). Denote by
(mt)t≥0 the flow of marginal laws of the solution to (1). Then, there
exists an invariant measure of (1) equal to m∗ := argminm V σ(m) and

W2(mt ,m
∗) → 0 as t → ∞ .

Proof key ingredients: Tightness of (mt)t≥0, Lasalle’s invariance principle,
Theorem 3, HWI inequality.
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Convergence, step 1: invariance

Let S(t)[m0] := mt , marginals of solution to (1) started from m0.

From m0 ∈
󰁖

p>2 Pp(Rd) let

ω(m0) :=
󰁱
µ ∈ P2(Rd) : ∃(tn)n∈N s.t. W2(mtn , µ) → 0 as n → ∞

󰁲
.

Then

i) ω(m0) is nonempty and compact (since w(m0) =
󰁗

t≥0 (ms)s≥t),

ii) if µ ∈ ω(m0) then S(t)[µ] ∈ ω(m0) for all t ≥ 0,

iii) if µ ∈ ω(m0) then for any t ≥ 0 there exists µ′ s.t. S(t)[µ′] = µ.
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Convergence, step 1: invariance

Then: from i) =⇒ there is m̃ ∈ argminm∈ω(m0) V (m).

from iii) ∀t > 0 there is µ s.t. S(t)[µ] = m̃ and by Theorem 3 for any
s > 0 we get

V (S(t + s)[µ]) ≤ V (S(t)[µ]) = V (m̃) .

from ii) S(t + s)[µ] ∈ ω(m0) so V (S(t + s)[µ]) ≥ V (m̃). By Theorem 3

0 =
dV (S(t)[µ])

dt
= −

󰁝

Rd

󰀏󰀏󰀏󰀏DmF (m̃, x) +
σ2

2

∇m̃

m̃
(x) +

σ2

2
∇U(x)

󰀏󰀏󰀏󰀏
2

m̃(x) dx .

Due to the first order condition (Proposition 4) get m̃ = m∗.
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Convergence, step 2: HWI inequality

We want to show that if mtn → m∗ then V (mtn) → V (m∗).

But V = F + σ2

2 H and H only l.s.c. So we need to show that

󰁝

Rd

m∗ log(m∗) dx ≥ lim sup
n→∞

󰁝

Rd

mtn log(mtn) dx .
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Convergence, step 2: HWI inequality

Otto, Villani [16, Theorem 3]:

Assume that ν(dx) = e−Ψ(x)(dx) is a P2(Rd) measure s.t. Ψ ∈ C 2(Rd),
there is K ∈ R s.t. ∂xxΨ ≥ KId . Then for any µ ∈ P(Rd) absolutely
continuous w.r.t. ν we have

H(µ|ν) ≤ W2(µ, ν)

󰀕󰁳
I (µ|ν)− K

2
W2(µ, ν)

󰀖
,

where I is the Fisher information:

I (µ|ν) :=
󰁝

Rd

󰀏󰀏󰀏󰀏∇ log
dµ

dν
(x)

󰀏󰀏󰀏󰀏
2

µ(dx) .
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Convergence, step 2: HWI inequality

We thus have
󰁝

Rd

mtn

󰀓
log(mtn)− log(m∗)

󰀔
dx ≤ W2(mtn ,m

∗)
󰀓󰁳

In + CW2(mtn ,m
∗)
󰀔
,

with

In := E
󰀗󰀏󰀏󰀏∇ log

󰀓
mtn(Xtn)

󰀔
−∇ log

󰀓
m∗(Xtn)

󰀔󰀏󰀏󰀏
2
󰀘
.

Need to show supn In < ∞ (estimate on Malliavin derivative of the change
of measure exponential).
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Convergence, step 3

Have mtn → m∗ for some tn → ∞. Moreover t 󰀁→ V (mt) is non-increasing
so there is c := limn→∞ V (tn).

Use uniqueness of m∗ and step 2 to show that any other sequence V (mtn′ )
converges to the same c , ω(m0) = {m∗}, so W2(mtn′ ,m

∗) → 0.
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Assumption 7 (For exponential convergence)

Let σ > 0 be fixed and the mean-field Langevin dynamics (1) start from
m0 ∈ Pp(Rd) for some p > 2. Assume that there are constants C > 0,
CF > 0 and CU > 0 such that for all x , x ′ ∈ Rd and m,m′ ∈ P1(Rd) we
have

|DmF (m, x)− DmF (m
′, x ′)| ≤ CF

󰀓
|x − x ′|+W1(m,m′)

󰀔
,

|DmF (m, 0)| ≤ CF

󰀓
1 +

󰁝

Rd

|y |m(dy)
󰀔
,

(2)

(∇U(x)−∇U(x ′)) · (x − x ′) ≥ CU |x − x ′|2 ,
|∇U(x)| ≤ CU(1 + |x |) ,

(3)

where the constants satisfy

σ2

2
(p − 1) + 3CF +

σ2

2
|∇U(0)|− CU

σ2

2
< 0 . (4)
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Exponential convergence

Theorem 5
Let Assumptions 1 and 7 hold true. Then

W2(mt ,m
∗) ≤ e(6CF−CU)tW2(m0,m

∗) ,

where (mt)t≥0 is the flow of marginal laws of solution to (1).

Proof outline: Use “integrated Lyapunov condition” from Hammersley,
Siska and S [9].

Main thing to show: for any m ∈ P(Rd), that

󰁝

Rd

L(m, x)v(x)m(dx) ≤ σ2

2
p(p − 1) + pCF + p

σ2

2
|∇U(0)|

+ p

󰁝

Rd

󰁫σ2

2
(p − 1) + 3CF +

σ2

2
|∇U(0)|− CU

σ2

2

󰁬
|x |p m(dx) .
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Particle approximation of m∗

Theorem 6
We assume that the 2nd order linear functional derivative of F exists, is
jointly continuous in both variables and that there is L > 0 such that for
any random variables η1, η2 such that E[|ηi |2] < ∞, i = 1, 2, it holds that

E

󰀥
sup

ν∈P2(Rd )

󰀏󰀏󰀏󰀏
δF

δm
(ν, η1)

󰀏󰀏󰀏󰀏

󰀦
+ E

󰀥
sup

ν∈P2(Rd )

󰀏󰀏󰀏󰀏
δ2F

δm2
(ν, η1, η2)

󰀏󰀏󰀏󰀏

󰀦
≤ L (5)

If there is an m∗ ∈ P2(Rd) such that F (m∗) = infm∈P2(Rd ) F (m) then

with i.i.d (X ∗
i )

N
i=1 such that X ∗

i ∼ m∗, i = 1, . . . ,N we have that

󰀏󰀏󰀏󰀏󰀏E
󰀥
F

󰀕
1

N

N󰁛

i=1

δX∗
i

󰀖󰀦
− F (m∗)

󰀏󰀏󰀏󰀏󰀏 ≤
2L

N
and

󰀏󰀏󰀏󰀏󰀏 inf
(xi )

N
i=1⊂Rd

F

󰀣
1

N

N󰁛

i=1

δxi

󰀤
− F (m∗)

󰀏󰀏󰀏󰀏󰀏 ≤
2L

N
.

Proof outline: see Chassagneux, S and Tse [3]
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Outlook

We have (nearly) full analysis of convergence of gradient descent
algorithm for (some) deep networks.

i) Uniform-in-time propagation of chaos,

ii) Multiplicative noise in the dynamics,

iii) Other deep network architectures,

iv) Common noise case i.e. SPDE,

v) Design better algorithms based on understood theory: faster
convergence, stability w.r.t. W2 metric etc.
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