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Neural networks

We are told these, but much bigger, will run everything. ..
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Neural networks

.. because they work really well for:

i) image recognition, see e.g. Huang et. al. [12],

ii) speech recognition, e.g. Dahl et. al. [5],

i)
i)
iii) numerical solution to PDEs, e.g. Vidales et. al. [19],
iv) dynamic hedging in finance, e.g. [1],

) -

\
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Until they don't

+.007 x =
£4 sign(VzJ (0, z,y)) esign(VgJ (0, 7))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

From Goodfellow et. al. [7].
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What is a neural net?

Parametric description of a function.
Fix

i) an activation function ¢ : R — R,

i) number of layers L € N,

iv) the size of the output layer /| € N,
v) the space of parameters
M= R xR x R x RF) x - x (R

vi) the network parameters

V= ((a},pY),...,(at, phy) en.

)
)
iii) the size of input to each layer k given by I € N, k =0, ...
)
)

x R

L1,

/L

)7



The neural network

V= ((ohB8Y),.... (", 8h) en

now defines a function RV : R” — R/ given recursively, for xg € R”, by
20 € R”, by

(RV)(2°) = atzt=t 4 L, zk:golk(akzk_l—{-ﬁk),k:1,...,L—1.

Here ¢/ : Rk — R is given, for z = (z1,...,2,)" € Rk, by
oM (2) = (p(z1), - o(2) "
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Example: One-hidden-layer network

For z € R”, its reconstruction can be written as
(RU")(z) = a?¢" Z cip(a
where for i € {1,...,/%}, its i-th row by a! € R*9. Let

a?=(2,..., )T where c; € R. The neural network is

= ((ad, ), (02, 57)).
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Universal approximation theorem

If an activation function ¢ is bounded, continuous and non-constant, then
for any compact set K C R the set

{(Rw) :RY = R : (RW) given above
with L = 2 for some nGN,an,ﬂjl GR,a} ERd,jzl,...,n}

is dense in the space of continuous functions from K to R. See e.g.
Hornik [11, Theorem 2].
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PDE approximation without the curse of dimensionality |

Consider
Orv 4 tr[ad2v] + bdxv =0 in [0, T) x RY,
v(T,)=g onRY,

where a(x) = 3diag(x)o [diag(x)o]" and b(x) = diag(x)u. Let (Bt)tejo, 1]

be an R? -valued Wiener process. The SDE arising in the Feynman—Kac
representation for v(t,x) is
. . . . dl s .
dX{ = X[y dt + X[ > oVdBl, te[t, T], X =x
j=1

and its solution is

dl

Xi = xi exp K,ﬂ - %Z(UU)2>(T o+ iaU(BfT _ B{)} — Wixi |

j=1 j=1
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PDE approximation without the curse of dimensionality |l
One-hidden-layer NN denoted ® s.t. g(x) = (R®)(x).

N

v(t, x) = E[g(Wex)] Z

k:

See series of works by Grohs, Hornung, Jentzen and von
Wurstemberger [8] and Jentzen, Salimova and Welti [13].

Note for later that

L
— RO)(Wix) = RP)(y x)m™(dy),
Y ROV = [ (RO)y (e
k=1
where
T
k=1

In fact

v(t,x) = /Rd (R®)(y x)m*(dy) where m* is the law of X"
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What is understood in deep learning

i) Representation theorems for various settings,

ii) Deep networks are a way to reduce number of parameters ,

i) ...
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What is not so well understood in deep learning

i) Why gradient algorithms in non-convex optimization do the job?

abdw‘{n .
feane Nan Wy us o loels
MmiUasn 39"“\'

ceoegh b

|0 Lpace o'Q'
l R rFWci-ws
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What is not so well understood in deep learning

i) How come massively over-parametrized models generalize well?
Pfdalcj\‘om

Vred/;o.\inu

v

Lnreeh,
. wf wt

See Hastie, Montanari, Rosset and Tibshirani [10].
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Non-covex minimization problem

With ¢(x, z) = Be(a - z) for x = (a, B) € (R x RP)", we should minimize,

1 , 52
R x RP)" 5 x <D< - = “x’,z>1/d,dz +— |x?,
( ) A b n;lw( ) | v(dy, dz) += I()
— =:U(x

~~

=:F(x)
which is non-convex.
Gradient descent with “learning rate” 7 > 0:

, . =2
Xjy1 = X — TV i F(xk)+%U(xk)2 , i=1...,n.

Here x' = (o, ') € R x RP.
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Approximation with gradient descent

In practice noisy, regularized, gradient descent algorithms are used:

i
Xk+1—Xk+T/
RxRD

) 1< . .
o (y - Z P(x., z)> V.,i¢(xg, z) v(dy, dz)
j=1

_2 . .
~ % VaU) + Ve,

where (yk, zx)ken are i.i.d. samples from v and f;; are i.i.d. samples from
N(0, I).

Taking weak limit gives

i ; NI 0.
axi=| [ 6(y- 23 p0d.2))Vaptx ey oo
RXRD nJ:1
52 . .
-2V, U(x;)} dt + odW, |
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Mean-field limit and convexity
Write

1
—Zgﬁ(x’,z) :/ &(x,z) m"(dx) as n— oco.
= R

The search for the optimal measure m* € P(R?) amounts to minimizing

PRY) > m ¢<y - / &(x, z) m(dx)) v(dy,dz) =: F(m),
RxRP RY
which is convex (as long as ®) i.e

F((1 —a)m+am') <(1—a)F(m)+aF(m') forall a€]0,1].

Observed in the pioneering works of Mei, Misiakiewicz and Montanari [14],
Chizat and Bach [4] as well as Rotskoff and Vanden-Eijnden [17].
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Derivation of MFLD |

=F (% izl_vgdx,) = /Rd d><y - %EN:@(XJ,ZQ v(dz,dy).

j=1

Hence

N
DFN(xL, . XNy = —% /R ) d><y— %;@(X1,2)> V(x', z)v(dz,dy),

On the level of the particle system

dX{z[/ <y——Zso (X, 2) )Vso X{,z) v(dy, dz)
RxRP

52
-5 VU )} dt + odW, ,
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Derivation of MFLD Il

Then

. 2 . .
dxi = —(/vax,F’V(X}, XN+ % VU(x;))dt FodW, .

We expect to have, as n — oo,

2
dX; = — <DmF(mt,Xt) + %VU(XQ) dt + odW; t € [0,00)
my = LaW(Xt) t e [0, OO) .

Fokker—Planck

2 2

om=YV - ((DmF(m,-) + %VU)m—i— %Vm) on (0,00) x RY.
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Measure derivatives
Example: If x,y € R? then V,(x,y) = y.

Example: v(m) = [pq f(x) m(dx) = (m, f). So perhaps we want 2% = f?

Definition 1 (Functlonal derivative)

For V : P — R we say the functional derivative exists if there is a
continuous map % : P x R? — R such that for any m,m’ € P

V(1 —s)m+sm')— V(m) / %

lim =
a0m

Jim . —(m,y)d(m" —m)(y).

Indeed for v(m) = (m, f) we have

im (1 —s)m+ sm) —
sI\(O S

imf) _ (m' —m, f)= /Rd f(y)d(m' —m)(y).

So g—,‘r’, = f (up to a constant, normalize so that functional derivative
integrates to 0).
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Measure derivatives

Definition 2 (Intrinsic derivative)

For V : P, — R we say the intrinsic derivative exists if %—V P, x R 5 R
is continuously differentiable in the 2nd variable and we say the function
DV : Py x RY — R given by

DmV(m,x) = ng—:(m, x)

is the intrinsic derivative.

Indeed for v(m) = (m, f) we have

Dmv(m, x) = Vif(x).
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Variational Perspective

Given a potential function f : RY — R the overdamped Langevin
dynamics (LD) reads

dXt = —Vf(Xt)dt + O'th,

i) The solution to LD under mild conditions admits a unique invariant
measure m?* with density

1 2 2
m%*(x) = — &P <—§f(x)> NVxeRY, Z = /]Rd exp (—;f(x)) d

ii) The dynamic LD can be viewed as the path of a randomised
continuous time gradient descent algorithm.

Note m®* is the unique minimiser of the free energy function
o2
Vo(m) = / f(x)m(dx) + —H(m)
Rd 2

over all probability measure m,

X .
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Energy functional

Fix a Gibbs measure g:

g(x) = e VX with U s.t. / e U gy — 1.
Rd

Define the relative entropy H for m € P(RY) as:

/ m(x) log <M> dx if mis a.c. w.r.t. Lebesgue measure,
Rd

H(m) := g(x)

0o otherwise.

2

We will study V7(m) := F(m) + % H(m).

S5F §
dX; = — (Vx%(mt,xt) + %VU(XJ) dt +odW; t € [0,00).
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Assumptions |

Assumption 1

F € C! is convex and bounded from below.

Assumption 2
The function U : RY — R belongs to C*. Further,
i) there exist constants Cy > 0 and C[; € R such that

VU(x)-x > Cylx|* + C|; forall xecRY.

ii) VU is Lipschitz continuous.
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Convergence when o \, 0

Proposition 3

Assume that F is continuous in the topology of weak convergence. Then
the sequence of functions V° = F + %2H converges in the sense of
I-convergence to F as o \, 0. In particular, given a minimizer m* of
V7, we have

limsup F(m*°) = inf F(m).
msup (m™) el o (m)

Proof outline: To get liminf,, o V" (my,) > F(m) use |.s.c. of entropy.

To get limsup,, o V7"(m,) < F(m) smooth with heat kernel and use
assumption of quadratic growth of U. |
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Characterization of the minimizer

Proposition 4

Under Assumption 1 and 2, the function V° has a unique minimizer
m* € Po(RY) which is absolutely continuous with respect to Lebesgue
measure and satisfies

oF 2 2
m(m*, )+ % log(m™) + %U is a constant, m* — a.s.

On the other hand if m' € I, where
6F 2 2
Iy = {m € P(RY) : 5—(m, )+ % log(m) + %U is a constant}
m

then m' = arg min ,cp(ray V7.
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Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

o2
S:=<{m:—H(m)<V(m) - inf F(m);.
{m: GHm <vim - i | A0}
Since V is l.s.c. it attains its minimum on S, say m* so V(m*) < V(m)
forall me S.

Note that m € S. If m ¢ S then
2

T H(m)+ inf  F(m') < V(m)

Vim* )< V(m) < —
(m™) < V(m) < 2 m'eP(RY)

so m* is global minimum of V. Since V is strictly convex it is unique.

26
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Step 2 (sufficient condition): Assume m* € Z,, and show that for any
e >0 and m € P(R?) you have

V((1—em*)+em)— V(m*)

OoF o? o?
> —_— I”* . —_— * — — * = .
/Rd<6 ( ,)—|—2Iogm+2U>(m m*)(dx) =0

Step 3 (necessary condition): similar to step 2



Connection to gradient flow
If m* € Z, then
2 2

g—,:(m*, )+ % log(m™) + %U is a constant, m* — a.s.

and so (formally, apply V, multiply by m*, apply V- )
o? o?

v ((DmF(m*, )+ ?VU) m* + 7Vm*> —0

and so it is (formally) the stationary solution of

0'2 0'2
om=V - <<DmF(m,-) + ?VU)m+ ?Vm> on (0,00) x RY,

and

m*(x) = %exp <—% <%(m*vx) + U(X))> )
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Mean-field Langevin equation

We see that if

2
dX; = — (DmF(mt,Xt) + %VU(XQ) dt +odW; t € [0,00) 1)

my = LaW(Xt) t e [0, OO)

has a solution then (m;)¢>o solves the Fokker—Planck equation
0'2 0'2
om=V . <<DmF(m, )+ ?VU)m + 7Vm> on (0,00) x R?.

Key challenges in studying invariant measure(s)

» Drift not of convolutional form Carillo, McCann Vilani [2] Otto [15],
Tugaut [18]

» To establish the link with optimisation need result to hold for all o
Bogachev, Roeckner, Shaposhnikov [?] and Eberle, Guillin Zimmer [6]
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Assumptions ||

Assumption 5

Assume that the intrinsic derivative D, F : P(R?) x RY — RY of the
function F : P(RY) — R exists and satisfies the following conditions:

i) DmF is bounded and Lipschitz continuous, i.e. there exists Ck > 0
such that for all x,x € R and m, m’ € P(RY)

|DmF(m, x) — DmF(m',x")| < Cr(|x — X'| + Wa(m, m')) .

i) DmF(m,-) € C®(RY) for all m € P(RY).
i) VDuF : P(RY) x RY — R x RY is jointly continuous.
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Proposition 6
If Assumptions 2 and 5 hold and if my € P»(RY) then:
i) the mean field Langevin SDE (1) has a unique strong solution,

i) given mo, my € P2(R?) and denoting by (m;)>0, (m})e>0 the
marginal laws of the corresponding solutions to (1), we have for all
t > 0 that there is a constant C > 0 such that

Wa(mye, m},) < CWa(mg, my).
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Theorem 3
Let mg € P2(RY). Under Assumption 2 and 5, we have for any t > s > 0

V7 (me) = V7(ms)

//Rd

Proof outline: Follows from a priori estimates and regularity results on the

2

2
o Vm,( )+%VU(X) my(x) dx dr.

D F(m,, x) +—

r

nonlinear Fokker—Planck equation and the chain rule for flows of measures.

32/46



Convergence

Theorem 4

Let Assumption 1, 2 and 5 hold true and mg € Up~2P,(R?). Denote by
(m¢)e>0 the flow of marginal laws of the solution to (1). Then, there
exists an invariant measure of (1) equal to m* := argmin,, V?(m) and

Whr(mg,m*) — 0 as t — 0.

Proof key ingredients: Tightness of (m;):>o, Lasalle’s invariance principle,
Theorem 3, HWI inequality.
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Convergence, step 1: invariance

Let S(t)[mo] := m¢, marginals of solution to (1) started from myq.

From mo € U, Pp(RY) let

w(mo) = {u € Po(RY) : 3(ty)nen s.t. Wa(my,, 1) — 0 as n — oo} .

Then

i) w(mg) is nonempty and compact (since w(mo) = (5o (Ms)s>t),
ii) if u € w(mg) then S(t)[n] € w(mgp) for all t >0,
i) if u € w(mg) then for any t > 0 there exists i/ s.t. S(t)[1] = p.
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Convergence, step 1: invariance

Then: from i) = there is /M € argmin y V(m).

mew(mg

from iii) Vt > 0 there is p s.t. S(t)[p] = M and by Theorem 3 for any
s > 0 we get

V(S(t + 9)[ul) < V(S(0)[l) = V().

from ii) S(t + s)[p] € w(mo) so V(S(t + s)[p]) > V(m). By Theorem 3

~ o2 Vim o? 2 -
D F(m, x) + - (x) + ?VU(X) m(x) dx.

_av(isS(@)u) _
0= dt T /Rd

Due to the first order condition (Proposition 4) get m = m*.
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Convergence, step 2: HWI inequality

We want to show that if m;, — m* then V(m;,) — V(m*).

But V=F+ %ZH and H only l.s.c. So we need to show that

/ m* log(m™) dx > lim SUP/ m, log(me,) dx .
Rd R4

n—oo
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Convergence, step 2: HWI inequality

Otto, Villani [16, Theorem 3]:

Assume that v(dx) = e~¥)(dx) is a Po(R?) measure s.t. W € C3(RY),
there is K € R s.t. O,V > Kly. Then for any 1 € P(RY) absolutely
continuous w.r.t. v we have

H(ulw) < Walp,) (VG - 5 W) )

where [ is the Fisher information:

)= |

2

V log %(x) p(dx) .
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Convergence, step 2: HWI inequality

We thus have
/d my, ( log(m;,) — Iog(m*)> dx < Wh(my,, m*)(ﬂ + COW(my,, m*)),
R

with
I =E Uv log (me,(Xe,)) = ¥ log (m"(X,,)) ﬂ .

Need to show sup,, I, < oo (estimate on Malliavin derivative of the change
of measure exponential).
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Convergence, step 3

Have m;, — m* for some t, — co. Moreover t — V/(m;) is non-increasing
so there is ¢ := lim,_00 V/(tn).

Use uniqueness of m* and step 2 to show that any other sequence V(m; )
converges to the same ¢, w(mg) = {m*}, so Wa(m; ,, m*) — 0. [
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Assumption 7 (For exponential convergence)

Let 0 > 0 be fixed and the mean-field Langevin dynamics (1) start from
mo € Pp(R?) for some p > 2. Assume that there are constants C > 0,

Cr > 0 and Cy > 0 such that for all x,x' € R? and m, m’ € P1(RY) we
have

|DonF(m, x) — DpF(m',X')| < Cr (\x—x’\ + Wi(m, m/)> o
2

DuF(m.0)] < Cr(1+ [ Iyl m(ay)

(VU(x) = VU(X)) - (x —x") > Cy|x — x'|2 ,

(3)
IVU(X)| < Cu(1+[x]),
where the constants satisfy

02 0'2 02
?(p—1)+3CF+7‘VU(O)|—CU7<0. (4)
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Exponential convergence

Theorem 5
Let Assumptions 1 and 7 hold true. Then

Wa(me, m*) < eCF= VW, (mo, m*),
where (m;)¢>o is the flow of marginal laws of solution to (1).

Proof outline: Use “integrated Lyapunov condition” from Hammersley,
Siska and S [9].

Main thing to show: for any m € P(R?), that

g 0'2
[ mxv mia) < % pp — 1) + pCe + p %IV U()
Rd

2 2 2
0 [ 5 p- 143 + SITUQ) - | x” ().
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Particle approximation of m*

E

Theorem 6
We assume that the 2nd order linear functional derivative of F exists, is
Jjointly continuous in both variables and that there is L > 0 such that for

any random variables 1y, 1y such that E[|n;|?] < oo, i = 1,2, it holds that
i 5°F

E| sup |—(m)||+E| sup |—=mn,m)|| <L (5)
veP>(RY) om vEP,(RY) om

If there is an m* € P>(RY) such that F(m*) = inf e p,(rey F(m) then
with i.i.d (X :N=1 such that X ~ m*, i =1,..., N we have that

1Y 2L 1Y
— * — * < — 1 = ] _ * <
F<N ;1 Ox: >] F(m*)| < N and (X,-)I’.I\’:nlfCRdF <N iglﬂsx,) F(m*)| <

=R

Proof outline: see Chassagneux, S and Tse [3]
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Outlook

We have (nearly) full analysis of convergence of gradient descent
algorithm for (some) deep networks.

i) Uniform-in-time propagation of chaos,

ii) Multiplicative noise in the dynamics,

)
)
iii) Other deep network architectures,
)
)

iv) Common noise case i.e. SPDE,

Design better algorithms based on understood theory: faster
convergence, stability w.r.t. YW, metric etc.

\'
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