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McKean Vlasov SDE’s

A McKean Vlasov Stochastic Differential Equation is one where the
coefficients are dependent on the law of the process.

Consider the following example:

X (t) = x +

∫ t

0
E[X (s)]ds + W (t)

Here E[X (t)] = xet so the solution of the SDE is X (t) = xet + W (t).

The intervention of the law in the trajectory of the process makes these
equations nonlinear. These equations are used to model continuous
mean-field systems of large numbers of particles with interactions.

Existence of McKean Vlasov solutions relies on coefficients of SDE
being Lipschitz with respect to the Wasserstein Metric

W (2)(µ, ν) = inf
π∈P2(E×E)

(∫
E×E
|x − y |2dπ(x , y)

)1
2

where π(x , y) has marginals µ(x) and ν(y). See [Carmona, 2016].

The proof involves constructing a Contraction Operator on the space
of measures on continuous paths and using Banach Fixed Point.

Large Deviation Principles

We are interested in the behaviour of Stochastic Differential
Equations where the driving noise is controlled by some asymptotic
parameter ε which is going to zero.

For instance in a dynamic system which is subject to very small random
perturbations, it would be valuable to understand whether the
deterministic system is a good approximation of a more complicated
stochastic system.

We use tools from Freidlin-Wentzell Theory which treat the solutions
of SDEs as a path valued random variable to prove LDP results for
different metrics on path space.

The Cameron Martin Space H is the set of all absolutely continuous
paths h(t) =

∫ t
0 ḣ(s)ds where ḣ ∈ L2([0,1]).

We call the solution to the ODE which approximates the SDE the
Skeleton Process. The Skeleton replaces the driving Wiener process
by a smooth deterministic element of the Cameron Martin Space.

Large Deviation Principles are well understood for a supremum path
norm. We wish to extend these results to other pathspace norms with a
coarser topology, in particular the Hölder norm.

Hölder Norms

For α < 0.5, we define the Hölder norms to be

||f ||α = ||f ||∞ + sup
t ,s∈[0,1]

|f (t)− f (s)|
|t − s|α

We can prove upper bounds of the tails of the distributions of the
α-norm of the following stochastic processes:

P
{
‖
∫ ·

0
K (s)dW (s)‖α ≥ u, ‖K‖∞ ≤ 1

}
≤ C ′ exp

(−u2

C ′
)

(1)

P
{
‖W‖α ≥ u, ‖W‖∞ ≤ v

}
≤ C max

(
1,
(u

v

)1/α)
exp

(−1
C

u1/α

v (1/α)−2

)
(2)

The Main Results

Let h ∈ H. We prove Large Deviation Principles in Hölder Norms for the
class of SDEs

X x
ε (t) = x +

∫ t

0
bε(s,X x

ε (s),L(X x
ε (s)))ds +ε

∫ t

0
σε(s,X x

ε (s),L(X x
ε (s)))dW (s)

with Skeleton Process

Φx(h)(t) = x+

∫ t

0
b(s,Φx(h)(s), δΦx(h)(s))ds+

∫ t

0
σ(s,Φx(h)(s), δΦx(h)(s))ḣ(s)ds

where (bε, σε)(t , x , µ) converges uniformly to (b, σ)(t , x , µ). b has
monotone growth in x and Lipschitz in µ. σ is bounded and Lipschitz in
both x and µ. b and σ are both continuous in time. Note εW (t) is
replaced by h(t).

LDP for Hölder Norms

Using methods from [Arous, 1994], it is well understood one can extend
LDP results from a supremum norms to other pathspace norms by
proving the following:

Theorem

∀R, ρ > 0 ∃δ, ν > 0 such that ∀0 < ε < ν,

P
{
||X x

ε − Φx(h)||α ≥ ρ, ||εW − h||∞ ≤ δ
}
. exp

(−R
ε2

)
This represents an upper bound on the probability that the Stochastic
Process deviates from the Skeleton Process and the random
perturbation does not deviate much from its drift term.

Proof

Firstly, we prove the inequality when the drift coefficients b = 0
and h = 0. Let X x ,l

ε be a step function approximation of the
process X x

ε on a net of size 1/l . Then

P
{
‖ε
∫ ·

0
σ(X x

ε (s),L(X x
ε (s)))dW (s)‖α ≥ ρ, ‖εW‖∞ ≤ δ

}
≤P
{
‖ε
∫ ·

0
[σ(X x

ε (s),L(X x
ε (s)))− σ(X x ,l

ε ,L(X x ,l
ε ))]dW (s)‖α ≥

ρ

2
,

‖X x
ε − X x ,l

ε ‖∞ + E[‖X x
ε − X x ,l

ε ‖2
∞]1/2 ≤ γ

}
(3)

+ P
{
‖X x

ε − X x ,l
ε ‖∞ + E[‖X x

ε − X x ,l
ε ‖2

∞]1/2 > γ, ‖X x
ε ‖∞ < N

}
(4)

+ P
{
‖ε
∫ ·

0
σ(X x ,l

ε (s),L(X x ,l
ε (s)))dW (s)‖α ≥

ρ

2
, ‖εW‖∞ ≤ δ

}
(5)

+ P
{
‖X x

ε ‖∞ ≥ N
}

(6)

.exp
(−R
ε2

)
�

Equation (3) is controlled by Equation (1) and Lipschitz of σ. Equation
(4) is controlled by uniform continuity of the process X x

ε . Equation (5) is
controlled by Equation (2) using a discretization argument. Equation (6)
is controlled using LDP for the Process under a supremum norm.

Extending the argument to general drift b involves using Grönwall’s
Inequality and a Girsanov measure change.

Functional Iterated Logarithm Law for McKean Vlasov Equations

Let Γα : Rd → Rd , a collection of continuous bijections, be a System of
Contractions centered at x . Consider the SDE

dY (t) = σ(Y (t),L(Y (t))
)

dW (t) + b(Y (t),L(Y (t)))dt Y (0) = x

and Zu(t) = Γφ(u)(Y (ut)). Then Zu satisfies the SDE

dZu(t) =
1√

log log(u)
σ̂u

(
Zu(t),L(Zu(t))

)
dWu(t) + b̂u

(
Zu(t),L(Zu(t))

)
dt

with coefficients

σ̂u(x , µ) = φ(u)∇
[

Γφ(u)

](
Γφ(u)−1(x)

)T
σ
(

Γφ(u)−1(x), µ ◦ Γφ(u)

)
b̂u(x , µ) = uL(x , µ)

[
Γφ(u)

](
Γφ(u)−1(x)

)
,

L is the generator of Y andWu is a rescaled Brownian motion. Let us
assume that σ̂u and b̂u converge uniformly to some σ̂ and b̂.

Then we apply our Large Deviation Principles Result to get

Theorem

With Probability 1, the set of paths {Zu; u > 3} is relatively
compact in the α-Hölder topology and its set of limit points
coincides with K = {Φ(h) :

||ḣ||22
2 ≤ 1}.
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