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Introduction
We consider the mean-field particles system defined by:
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With some classical hypotheses, we get the coupling (propagation of chaos):
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with X1
t being the solution of the Non-Linear Reflected Stochastic Differental Equation:
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and ∇F ∗ u being the convolution product between ∇F and u.

Existence and uniqueness of a solution
Steps of the proof (inspired by [1]) that Equation (2) admits a unique strong solution on R+:

1. We start by TANAKA’s [3] Proof of the existence of a strong solution for the Linear Reflected
Stochastic Differential Equation.

2. We define an operator with fixed points that are solutions of Equation (2).
3. We prove that, on a well chosen interval [0, T ], there exists a unique fixed point for the operator

by proving it is a contraction.
4. We then engage in reductio ad absurdum to prove that the result extends to R+.

The reflection lets us bypass the moments’ control we would usually need.

Description of the invariant probabilities
First, by Sσ, we denote the set of invariant probabilities for Equation (2).
Some computation on Equation (2) gives us the following Fokker-Planck equation:
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∇u(t, y) = −[(∇F ∗ u(t, ·) +∇V (.))u(t, ·)](y),

for y ∈ ∂D e.g. a von Neumann boundary condition.
We can easily prove that:

1. For any diffusion coefficient σ > 0, Sσ 6= ∅.
2. If we assume moreover that the external potential is symmetric, we obtain the existence of a

symmetric invariant probability measure.

Case with V convex

1. We can have the uniform propagation of chaos (same as above but not depending on T ).
2. We take Zi solution of Equation (1) with the same Brownian motion as Xi, µt to be the law of
X1
t starting at µ0 and νt the law of Z1

t starting at ν0. We consider W2(µt, νt) the Wasserstein
distance between µt and νt. Using the uniform propagation of chaos, we have:
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with ν1,Nt the law of Z1
t starting at ν0, ν

1,N
t the law of Z1

t starting at ν0. From that, by
studying W2(µ

1,N
t , ν1,Nt ), we have the exponential convergence rate when N tends to infinity:

W2(µt, νt) ≤W2(µ0, ν0)e
−2λt.

Case with V non-convex

1. We no longer have the uniqueness of invariant probabilities and uniform propagation of chaos.
2. As in [6] we have that the number of elements in Sσ depends on σ.

An application
Equation (2) can also be seen as an arguably
better version of the gradient descent algorithm.
It would provide the right solution if one tries to
find the minimum of the following function with
B as a starting point:

In this case, the reflection is providing an inter-
val of interest that lets the algorithm find the
right answer faster.

Handling the reflection term
The following reasoning is used multiple times
during this work to dominate certain reflection
terms:
If x ∈ ∂D and nx the exiting normal vector in
x, then for each y ∈ D we have

〈y − x,nx〉 ≤ 0.

Let x ∈ ∂D. With [5] we know that there exists
a halfplane that contains the set D. We obtain a
hyperplane Hx that contains the point x but does
not contain any of the interior points of D.
Then, ∀y ∈ D ⊂ Hx we have that y − x is poin-
ting toward Hx while nx is by definition pointing
toward the outside of Hx. This leads to our in-
equality.
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