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Why Condition 2?

Imagine that one is solving a stochastic equation

Γ(Y, Z) = 0, Y ∼ ν.

Y is the stochastic input with determined distribution ν
and Z is the solution/output. Often, one seeks to solve
the above by instead considering a mollified equation
Γn(Y, Z) = 0 such that “Γn → Γ” and ∀n the equation is
strongly solvable; there is a measurable function F n such
that Zn := F n(Y ) is a solution. Then, passing to the limit
in some sense “Γn(Y, Zn)→ Γ(Y, Z)”.

In the case of compactness arguments (weak existence)
one proves the weak convergence of a subsequence of the
joint distributions of approximate solutions (Y, Zn) and
represents the solutions on a another probability space
(Ω̄, F̄ , P̄) such that (Ȳ n, Z̄n)→ (Ȳ , Z̄) surely. Since (Ȳ n, Z̄n)
have the same distribution as (Y, Zn), F n(Ȳ n) = Z̄n. There-
fore Z̄ is the pointwise limit of Ȳ n measurable functions,
but unfortunately, Ȳ n varies along the same limit, and
one cannot conclude that there is a measurable function
F such that Z̄ = F (Ȳ ). So, in the case of McKean-Vlasov
with Common noise, one can show µ̄nt = L (X̄n

·∧t|F B̄n
t ), yet

µ̄t = limn µ̄
n
t cannot be claimed to be F B̄

t measurable. Seek-
ing to identify the connection of the limiting random mea-
sure µ̄ to X̄ , the relaxation µ̄t = L (X̄·∧t|F B̄,µ̄

t ) is made.

Existence Proof Rationale

The existence result follows from a standard method; a
combination of the Arzelà-Ascoli Theorem, Skorokhod
Representation and Convergence Lemmas for Stochastic
integrals amongst other tools. In addition, some weak
convergence arguments are employed to handle the extra
compatibility conditions, and these motivate demanding
µt = L (X·∧t|FB,µ

t ) rather than L (Xt|FB,µ
t ) as the former

carries more information about the dependence structure
between X and (B, µ). To connect the flow of measures
µt to the SPDE (2), a Stochastic Fubini theorem is used to
handle the fact that µ carries some randomness external to
B. Indeed, one needs to be able to show that for ϕ ∈ C∞0 :

E
[ ∫ t

0

∇ϕ(Xs)ρ(s,Xs, µs) dBs

∣∣∣∣FB,µ
t

]

=

∫ t

0

E[∇ϕ(Xs)ρ(s,Xs, µs)|FB,µ
s ] dBs.

The compatibility assumption enables such an equality.
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This poster concerns the McKean-Vlasov Stochastic Differential Equation with Common Noise, the
N →∞ limit of N -particle systems satisfying, for i ∈ {1, ..., N}, t ∈ I := [0,∞),

dX i
t =b(t,X i

t , µ
N
t )dt + σ(t,X i

t , µ
N
t )dW i

t + ρ(t,X i
t , µ

N
t )dBt µNt :=

1

N

N∑
j=1

δ
X
j
·∧t

↓ as the number of particles N →∞
dXt =b(t,Xt,L (X·∧t|FB

t ))dt + σ(t,Xt,L (X·∧t|FB
t ))dWt + ρ(t,Xt,L (X·∧t|FB

t ))dBt

B is the common noise, W i are the private noises, all mutually independent and independent of the
common noise and L (X i

·∧t|FB) denotes the regular conditional distribution of X i
·∧t given FB

t .
These equations have been studied in numerous contexts by, for example, Kurtz and Xiong [4] and
very recently by Coghi and Gess [2] to study a non-linear SPDE of measure, and also Carmona,
Delarue and Lacker [1] for Mean Field Games. If one wishes to depart from the Global Lipschitzean
framework (as in [1]) and establish an existence and uniqueness theory, then numerous issues arise.

Definition of Solutions of the McKean–Vlasov SDE with Common Noise.
A weak solution consists of a filtered probability space (Ω,F ,F,P) equipped with F Brownian
motions B and W and F0 measurable initial condition ξ, all mutually independent, along with
F adapted processes X and µ that are RdX and P(C(I ;RdX)) valued respectively, satisfying the
following conditions:

1.
∫ t

0 |b(s,Xs, µs))| + |σ(s,Xs, µs))|2 + |ρ(s,Xs, µs))|2 ds <∞ P-a.s. for all t ∈ I

2. µt = L (X·∧t|FB,µ
t ) for all t ∈ I

3. X is compatible with (B, µ) in the sense that FX
t is independent of FB,µ

∞ given FB,µ
t for all t ∈ I .

Also, (W, ξ) ⊥⊥ (B, µ) and (X,µ) is compatible with (B,W, ξ)

4. P-a.s. for all t ∈ I ,

Xt = ξ +

∫ t

0

b(s,Xs, µs) ds +

∫ t

0

σ(s,Xs, µs) dWs +

∫ t

0

ρ(s,Xs, µs) dBs. (1)

If X,µ are {FB,W,ξ
t }t := {σ(ξ, Bs,Ws : s ≤ t)}t adapted, then the solution is strong.

A brief explanation of the seemingly unusual conditions 2. and 3. would be that compatibility is
usually hidden (in the case of non-common noise McKean-Vlasov and Standard SDE theory)
within the claim that the solution is adapted to some filtration for which the input process W is
adapted and in this setting, compatibility is needed to connect solutions to (1) to solutions of the
Stochastic Fokker Planck equation (2). The relaxation that µ is L (X|FB,µ) opposed to simply
L (X|FB) comes from the fact that one expects to obtain weak solutions via compactness
arguments and measurability is unstable under weak limits.

An Existence Result
Theorem 1. Let assumption 4 (top right) hold. Then for I = [0, T ], there exists a weak solution to
the McKean-Vlasov SDE with Common Noise and the measure flow µ projected onto time marginals
µ̃t := µt ◦ ψ−1

t is a weak solution to the SPDE (2).

A case studied by Mishura and Veretennikov in [5] for the normal McKean-Vlasov setting can be
adapted to the setting with a common noise:

Assumption 2. The coefficients b, σ and ρ are measurable, (σ, ρ) do not depend on the measure
argument and are such that there exists a unique strong solution to the driftless SDE:

dX0
t = σ(t,X0

t )dWt + ρ(t,X0
t )dBt.

Also, σ is non-degenerate, invertible and σ−1b is bounded and Lipschitz continuous in the measure
component with respect to the total variation distance, i.e. there is a constant cTV such that,

|σ(t, x)−1b(t, x, µ)− σ(t, x)−1b(t, x, ν)| ≤ cTVdTV(µ, ν).

Joint Weak Uniqueness
Theorem 3. Under assumption 2, the McKean-Vlasov Equation with Common Noise
satisfies uniqueness of joint distribution.
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Coefficients and Initial Condition

Assumption 4. Functions b, σ and ρ depend on
measure only through the time marginals, i.e
b(t,Xt,L (X·∧t|FB,µ

t )) = b̃(t,Xt,L (Xt|FB,µ
t )). Further,

they are bounded and jointly continuous in the last two
arguments in the following sense: if (xn → x, µn

w→ µ) as
n → ∞ then (b, σ, ρ)(t, xn, µn) → (b, σ, ρ)(t, x, µ) as n → ∞.
The initial data has, for some fixed p ∈ [1,∞], ||ξ||p <∞.

A Non-Linear SPDE

A probabilistically weak solution to the SPDE (2) is a fil-
tered probability space (Ω,F ,F,P) equipped with an F
Brownian motion B with F adapted P(RdX) valued pro-
cess ν satisfying, for all t ∈ I and for all test functions
ϕ ∈ C∞0 (RdX)

〈νt, ϕ〉 =〈ν0, ϕ〉 +

∫ t

0

〈νs, Lϕ(s, ·, νs)〉 ds

+

∫ t

0

〈νs,∇ϕρ̃(s, ·, νs)〉 dBs P-a.s.
(2)

If ν is {FB
s }t adapted, then the solution is strong.

Theorem 3 Proof Rationale

In order to compare the distributions of the two solu-
tions, one needs method of comparison that leverages
the fact that µ = L (X|FB,µ). However, for arbitrary
couplings putting two solutions on the same probabil-
ity space, the dependence structure between the two ran-
dom measures µ1 and µ2 obstructs the ability to estimate,
say EdTV(µ1, µ2) ≤ P[X1 6= X2]. Employing a coupling
that fixes the underlying randomness of both µ1 and µ2

to be the same, it becomes possible to prove distributional
uniqueness by representing the two solutions by Girsanov
Transformations of the unique process X0.

Lyapunov Criteria for Existence and Uniqueness

It is also possible to extend the results of a previous work
by H., Šiška and Szpruch [3] to the common noise setting.
These existence and uniqueness arguments leverage the
existence of Lyapunov functions for the equation (1).
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