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Wasserstein gradient flows

Jordan-Kinderlehrer-Otto, 1998: the Fokker-Planck equation

∂tρ = div(∇V ρ) + ∆ρ, ρ(0) = ρ0,

is a gradient flow of the free energy

F(ρ) =

ˆ
ρ log ρ+ V ρ

with respect to the Wasserstein distance on the probability measures with
finite second moments

W 2
2 (µ, ν) = inf

γ∈Γ(µ,ν)

ˆ
Rd×Rd

|x − y |2 γ(dxdy)

(Γ(µ, ν) is the set of couplings between µ and ν)

Hong Duong (University of Birmingham) degenerate and nonlocal PDEs 23/01/2018 2 / 33



JKO-scheme

JKO-scheme: Given a time-step h > 0;

ρh0 := ρ0,

for n ≥ 1, ρhn is defined to be the unique minimizer of

K(ρ) :=
1

2h
W 2

2 (ρ, ρhn−1) + F(ρ).

Then the sequence {ρhn}n≥0, after an appropriate interpolation, converges
to the solution to the Fokker-Planck equation as h→ 0.
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Key ingredients in the JKO-proof

Derive the Euler-Langrange equation (optimality conditions) for the
minimizer: consider the flow

∂τΦτ (x) = ξ(Φτ (x)), Φ0 = id

then define ρτ := (Φτ )]ρ
k
h and compute d

dτK(ρτ )|τ=0 = 0 to obtain
the E-L equation.

Establish time-discretization of the weak formulation for the
Fokker-Planck equation (tested again a smooth function ϕ).

To match two equations: choose ξ = ∇ϕ.
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The theory of Wasserstein gradient flows

The theory of Wasserstein gradient flow has developed tremendously over
the last 20 years

Many PDEs are Wasserstein gradient flows: porous medium equation,
McKean-Vlasov equations, finite Markov chain, etc;

Link different areas of Mathematics together (optimal transport,
measure geometry & probability)

see e.g., monographs

Ambrosio L., Gigli N., Savaré G (2008),

Villani C. (2003 & 2009).

or the most recent survey by Santambrogio (2017).
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Questions

Can one establish JKO-type scheme for degenerate and nonlocal
PDEs, e.g., the kinetic Fokker-Planck equation?

Why should one minimize Wasserstein distance and entropy?

Can one exploit variational formulation for multi-scale analysis?
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Variational formulation for degenerate and nonlocal PDEs

Our aim is to construct JKO-type schemes for the following degenerate
and non-local PDEs:

the kinetic Fokker-Planck equation,

a degenerate diffusion of Kolmogorov-type equation,

the fractional kinetic Fokker-Planck equation.

Main difficulty: the Wasserstein metric does not work. Need to introduce
new suitable optimal transportation cost functionals.
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THE KINETIC FOKKER PLANCK EQUATION
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Langevin dynamics and the kinetic Fokker-Planck equation

The kinetic Fokker-Planck equation

∂tρ = −divq

( p

m
ρ
)

+ divp

(
∇V ρ

)
+ γ divp

( p

m
ρ
)

+ γβ−1∆pρ.

The Langevin dynamics

dQ =
P

m
dt,

dP = −∇V (Q) dt − γ P
m

dt +
√

2γβ−1 dWt .

Neither a gradient flow nor a Hamiltonian flow, but a combination of them.
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Variational formulation for the kinetic Fokker-Planck
equation

New optimal transportation cost functional

Ch(q, p; q′, p′) := h inf

{ˆ h

0

∣∣mξ̈(t) +∇V (ξ(t))
∣∣2 dt : ξ ∈ C 1([0, h],Rd)

such that

(ξ,mξ̇)(0) = (q, p), (ξ,mξ̇)(h) = (q′, p′)

}
.

Given µ(dqdp), ν(dq′dp′), define

W̃h(µ, ν) := inf
γ∈Γ(µ,ν)

ˆ
R2d×R2d

Ch(q, p; q′, p′)γ(dqdpdq′dp′)
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Explanation of the cost

Wasserstein cost

C (x , y) = |x − y |2 = h inf

{ˆ h

0

∣∣ξ̇(t)
∣∣2 dt : ξ ∈ C 1([0, h],Rd)

such that ξ(0) = x , ξ(h) = y

}
.

Freidlin-Wentzell small-noise large deviation

dX ε
t =
√

2εdWt .

then {X ε : X ε(0) = x ,X ε(h) = y} satisfies a LDP with rate function
C (x , y).
Our cost: small-noise perturbation of the Hamiltonian system

dQ =
P

m
dt

dP = −∇V (Q) dt +
√

2εdWt
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Variational formulation for the kinetic Fokker-Planck
equation

JKO-type scheme for the kinetic Fokker-Planck equation: ρh0 := ρ0, for
n ≥ 1, ρhn as the solution of the minimization problem

min
ρ

1

2h

1

γ
W̃h(ρhk−1, ρ) + F(ρ),

Theorem (D.-Peletier-Zimmer, M2AS 2014)

Under the piece-wise constant interpolation, the sequence {ρhn}n
converges, as h→ 0, to the solution of the kinetic Fokker-Planck equation.

Huang 2000 introduced a different scheme where the external force is not
included in the cost functional.
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A DEGENERATE DIFFUSION OF KOLMOGOROV-TYPE EQUATION
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A degenerate diffusion of Kolmogorov-type equation

A degenerate diffusion of Kolmogorov-type equation:

∂tρ(t, x1, . . . , xn) = −
n∑

i=2

xi · ∇xi−1ρ+ divxn(∇V (xn)ρ) + ∆xnρ

the corresponding SDEs:

dX1 = X2 dt,

dX2 = X3 dt,

...

dXn−1 = Xn dt,

dXn = −∇V (Xn) dt +
√

2 dWt .

This is a (very) simple example of a chain of differential equations studied
by Eckmann-Hairer 2000 and Delarue-Menozzi 2010
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A degenerate diffusion of Kolmogorov-type equation

A rich history (V = 0):

n = 2: Kolmogorov 1934,

Hörmander 1967: hypoelliptic PDEs,

many papers by Polidoro, Pascucci and co-authors (fundamental sol.,
Harnack inequality, Schauder estimates, etc),

recent interests: Chen-Zhang 2019 (propagation of regularity).
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Optimal transport cost functional

Let x = (x1, . . . , xn) ∈ Rdn, y = (y1, . . . , yn) ∈ Rdn. We define the
following cost between x and y:

Ct(x, y) := t inf
ξ

ˆ t

0
|ξ(n)(s)|2 ds,

where the infimum is taken over all curves ξ ∈ Cn([0,T ],Rd) that satisfy
the boundary conditions

(ξ, ξ̇, . . . , ξ(n−1))(0) = (x1, x2, . . . , xn) and

(ξ, ξ̇, . . . , ξ(n−1))(t) = (y1, y2, . . . , yn).

NB: Ct(x, y) is called the mean squared derivative cost function and has
many applications in motor control, biometrics and online-signatures and
robotics, etc.
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Optimal transport cost functional

Let h > 0 be given and Ch(x, y) be the mean square derivative cost
function. Let µ and ν be in P2(Rdn). The Monge-Kantorovich optimal
transport cost Wh(µ, ν) between µ and ν is defined by

Wh(µ, ν)2 = inf
γ∈Γ(µ,ν)

ˆ
Rdn×Rdn

Ch(x, y) γ(dxdy).

Approximation scheme: let ρh0 := ρ0. For k ≥ 1, define ρhk as the solution
of the minimization problem

min
ρ∈P2(Rdn)

1

2h
Wh(ρhk−1, ρ) +

ˆ
Rdn

(
V (xn) + log ρ

)
ρ dx.
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Convergence of the approximation scheme

Theorem (D.-Tran, DCDS-A 2018)

Under the piece-wise constant interpolation, the sequence {ρhn}n
converges, as h→ 0, to the solution of the degenerate Kolmogorov
equation

Hong Duong (University of Birmingham) degenerate and nonlocal PDEs 23/01/2018 19 / 33



Key ingredients in the proofs

Follows JKO procedure:

Derive the Euler-Langrange equation (optimality conditions) for the
minimizer by perturbing the optimizer under a flow

∂τΦτ (x) = ξ(Φτ (x)), Φ0 = id .

Establish time-discretization of the weak formulation (tested again a
smooth function ϕ).

To match two equations: choose ξ appropriately (in terms of ϕ),

Estimates of the new cost functions via the Wasserstein distance.
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THE FRACTIONAL KINETIC FOKKER PLANCK EQUATION
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The fractional kinetic Fokker-Planck equation

The fractional kinetic Fokker-Planck equation:

∂tρ+ v · ∇xρ = divv (∇Ψ(v)ρ)− (−∆v )sρ,

Here −(−∆v )s is the fractional Laplacian operator on the variable v ,
where the fractional Laplacian −(−∆)s , is defined by

−(−∆)s f (x) := −F−1(|ξ|2sF [f ](ξ))(x)

= −Cd ,s

ˆ
Rd

f (x)− f (y)

|x − y |d+2s
dy .
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Gradient flow formulation of the fractional heat equation

Erbar (2014) proved that the fractional heat equation

∂tρ = −(−∆)sρ

is a gradient flow of the entropy w.r.t. a new metric defined via a
non-local variant of the dynamical characterization of the Wasserstein
distance by Benamou and Brenier.

Open problem: Is the fractional Fokker Planck equation

∂tρ = −(−∆)sρ+ div(∇Ψρ)

a gradient flow of the free energy w.r.t. some distance?

The distance introduced by Erbar only works for the entropy!
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Operator splitting scheme for the fractional Fokker Planck
equation

Instead, Agueh-Bowles (2015) developed a splitting scheme for the
fractional Fokker Planck equation:

(i) transport equation, ∂tρ = div(∇Ψρ), as a Wasserstein gradient flow
of the potential energy

´
Ψρ (Kinderlehrer-Tudorascu 2006),

(ii) fractional heat equation, ∂tρ = −(−∆)sρ, exactly solvable by
convolution with the fractional heat kernel.

Question: can we develop an operator splitting scheme for the fractional
kinetic Fokker Planck equation?
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Operator splitting scheme for the FKFPE

(i) Kinetic transport phase, ∂tρ+ v · ∇xρ = divv (∇Ψ(v)ρ), using a
JKO-type variational formulation.

(ii) Fractional diffusion phase, ∂tρ = −(−∆v )sρ, exactly solvable by
convolution with the fractional heat kernel (in v -variable only).
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Variational formulation for the kinetic transport equation

The kinetic transport equation

∂tρ+ v · ∇xρ = divv (∇Ψ(v)ρ)

The minimum acceleration cost functional: given (x , v), (x ′, v ′) ∈ R2d

Ch(x , v ; x ′, v ′) = hmin
ξ

ˆ h

0
|ξ̈(t)|2 dt

where the minimum is taken over all curves ξ ∈ C 2([0, h],Rd) such that

(ξ, ξ̇)(0) = (x , v), (ξ, ξ̇)(h) = (x ′, v ′).

This cost has been studied by Huang 200, Gangbo-Westdickenberg 2009,
Westdickenberg 2010, and Cavalletti-Sedjro-Westdickenberg 2019 for
other PDEs.
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Variational formulation for the kinetic transport equation

Explicit expression:

Ch(x , v ; x ′, v ′) = |v ′ − v |2 + 12
∣∣∣x ′ − x

h
− v ′ + v

2

∣∣∣2.
Given µ, ν ∈ P2(R2d), define

Wh(µ, ν)2 = inf
γ∈Γ(µ,ν)

ˆ
R4d

Ch(x , v ; x ′, v ′)γ(dxdvdx ′dv ′),

then the kinetic transport equation can be approximated using the
JKO-type scheme: ρkh minimizes

1

2h
Wh(ρk−1

h , ρ)2 +

ˆ
Ψρ.

NB: note that there is no entropy term which has a super-linear growth
making the analysis harder. This generalizes Kinderlehrer-Tudorascu’s
result to the kinetic case.
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The fractional diffusion equation

The fractional diffusion equation

∂tρ = −(−∆vρ)sρ, ρ(0, x , v) = ρ0(x , v)

We solve this equation exactly

f (x , v , t) = Φs(·, t) ∗v f0(x , v)

where ∗v is the convolution operator in v -variable, where Φs is the
fractional heat kernel

Φs(v , t) := F−1(e−t|·|
2s

)(v).

Hong Duong (University of Birmingham) degenerate and nonlocal PDEs 23/01/2018 28 / 33



the fractional diffusion equation

Technical difficulty: infinite second moment

ˆ
|v |2Φs(v , t) dv =∞ ∀s ∈ (0, 1), t > 0.

Need to renormalize the convolution by introducing

Φh
s,R(v) := Φv

s (h)1BR
(v), Φh

s (v) := Φs(v , h).
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Operator splitting scheme

With an initial condition f 0
h = f0, for n = 1, · · · ,N we iteratively compute

the following:

Given a trunction parameter R > 0, compute the renormalised
convolution

f̄ nh,R :=
Φh
s,R ∗v f

n−1
h,R

‖Φh
s,R‖L1(Rd )

.

Solve for the minimizer f nh,R of the problem

f nh,R := argminf ∈P2
a (Rd )

{ 1

2h
Wh(f̄ nh,R , f )2 +

ˆ
R2d

Ψ(v)f (x , v)dxdv
}
.

Time-interpolation: We define fh,R by setting

fh,R(t) := Φs(t − tn) ∗v f nh,R for t ∈ [tn, tn+1).
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Convergence of the scheme

Theorem (D.-Lu, DCDS-A 2019)

The time-interpolation process converges, as h ↓ 0 and R = h−1/2,
converges to a weak solution of the FKFPE.

Only existence, no uniqueness! (difficulty: lack of product rule for the
fractional operator)
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Summary

We have developed variational formulation, by introducing new optimal
transportation cost functionals, for some degenerate and non-local PDEs

the kinetic Fokker-Planck equation,

a degenerate diffusion of Kolmogorov-type equation,

the fractional kinetic Fokker-Planck equation.

Future work: extensions to other degenerate and non-local PDEs, develop
a unified framework.
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