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Part I. Motivation and Main results



Supercooling
• Liquid water may exist in metastable state under 0◦C

◦ small perturbations or contact with ice⇒ solidification

◦ see the video ( )

◦ formulated by Stefan [in late 19’s] and Brillouin [early 20’s]

• Description of the front of ice during solidification

◦ PDE point of view: heat equation with free boundary

{ ill-posed in classical sense speed of propagation may
become infinite

{ description up to the emergence of a singularity in the
propagation of the front [Fasano et al., DiBenedetto et al., 80’s]

◦ new interest in probability for several years: maths finance,
neurosciences with singular mean field interaction

◦ purpose of the talk : go beyond singularities

{ use a probabilistic approach of the problem



PDE formulation
•Work in dimension 1

• Denote by Λt the position of the front at time t

{ ice below Λt and liquid above Λt

◦ Λ0 = 0

LIQUID

SOLID

0

Λ

t

x

◦ inside liquid phase{ heat equation for u(t, x), x > Λt
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Particle system [Chayes Swindle, Dembo and Tsai]

• Regard −u(t, ·) as a density (with properly normalized initial
condition)

• Provide particle description of the dynamics (α = 1)
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{ take an overloaded initial condition

{ instantaneous jump of the front!
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Continuous version[D. et al., Hambly et al., N. S.]

•May easily replace the discrete dynamics by continuous dynamics
inside the liquid phase

• N particles

◦ evolve like independent Brownian motions before one them
touches the front

◦ each time one particle is absorbed by the front, the front
receives an upward kick of size α/N

{ particle ]i ∈ {1, · · · ,N}

Xi
t = Xi

0 + Bi
t, t ≤ τi = inf

{
s ≥ 0 : Xi

s ≤ Λs
}

Λt =
α

N

N∑
j=1

1{τj≤t}

◦ X1
0 , · · · ,X

N
0 ⊥⊥ initial conditions, B1, · · · ,BN ⊥⊥ Brownian

motions

◦ reformulate in terms of Xi
t − Λt (distance from particle to front)
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Probabilistic formulation
• (Formal) mean field limit{ provide the dynamics of one typical
particle within the population

Xt = X0 + Bt − αP
(
τ ≤ t

)
, t ≤ τ = inf{s ≥ 0 : Xs ≤ 0}

{ attention: here, focus on the distance from the particle to
the front

◦ front is here given by Λt = αP
(
τ ≤ t

)
• Formal connection with Stefan problem

u
(
t, x + Λt

)
= −

d
dx
P
(
Xt ∈ [x, x + dx], t < τ

)︸                              ︷︷                              ︸
p(t,x)

◦ easily guess the difficulty: mass may accumulate at x = 0

{ p is smooth at the boundary? ⇔ differentiability of Λ?

Λ̇t =
α

2
∂xp(t, 0) (hitting time dXt = −Λ̇tdt + dBt, t)

{ not even clear if p may satisfy Dirichlet condition
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• To get jump ≥ x at time t, need

α

N

N∑
j=1

1Xj
t−∈(0,x]︸            ︷︷            ︸

contribution to the jump of particles ≤ x

≥ x



Physical solution
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α
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◦ too weak description of the jumps
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Physical solution
• Possible jumps of Λ

◦ original description of the jumps is too weak

• To get jump ≥ x at time t, need the mass

α

N

N∑
j=1

1Xj
t−∈(0,x]︸            ︷︷            ︸

contribution to the jump of particles ≤ x

≥ x

•Write the mean field equation in the form

Xt = X0 + Bt − αP
(
τ ≤ t

)
, t ≤ τ = inf{s ≥ 0 : Xs ≤ 0}

{ Λt = αP
(
τ ≤ t

)
◦ require

Λt − Λt− = inf
{
x ≥ 0 : αP

(
Xt− ∈ (0, x]

)
< x

}
• ∃ by tightness from particle system using M1-topology for Λ



Further prospects
• Application to neurosciences [Carrillo et al., D. et al.]
◦ regard −X as the firing potential of a neuron

{ τ is the spiking time of the neuron

◦ α{ excitation parameter⇒ neurons are more likely to fire
when one of them has spiked

• Application to finance [Hambly et al., N. S.]

◦ regard X as the wealth of a company

{ τ is the default time of the company

◦ α{ intensity of the default

•More general types of noise

◦ how do the fluctuations impact the singularity?

{ may have connection with mean field rough equations
[Cass Lyons, Deuschel et al., Bailleul et al.]
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{ τ is the spiking time of the neuron

◦ α{ excitation parameter⇒ neurons are more likely to fire
when one of them has spiked

• Application to finance [Hambly et al., N. S.]

◦ regard X as the wealth of a company

{ τ is the default time of the company

◦ α{ intensity of the default

•More general types of noise

◦ may put a common noise

{ get an SPDE with a free boundary [Hambly Ledger
Sojmark]



Main results
• Assume : u(0, ·) is bounded and changes monotonicity finitely
often on compacts

◦ take physical solution (X,Λ)

• Then : for any t > 0, p(t−, ·) has two same properties as u(0, ·)

(i) If lim supx↓0 x−1p(t−, x) < ∞, then Λ ∈ C1([t, t + ε)) for some
ε > 0

(ii) If lim supx↓0 x−1p(t−, x) = ∞ but limx↓0 p(−t, x) < 1
α , then Λ is

1/2-Hölder continuous on [t, t + ε) for some ε > 0

(iii) If limx↓0 p(t−, x) ≥ 1
α , then may jump

In all cases, ∃ε > 0 : Λ ∈ C1((t, t + ε)) and p(s, ·), s ∈ (t, t + ε), solves

∂tp =
1
2
∂xxp + Λ̇t∂xp, p(·, 0) = 0 on (t, t + ε), Λ̇s =

α

2
∂xp(s, 0)

• Moreover : uniqueness



Part II. Elements of proof



C.d.f. estimates
• Step 0 : There is always a density! Smooth away from the front

◦ shift of Brownian motion up to τ

• Step 1 : No possible jump of Λ in (t, t + ε), i.e.

◦ ≤
β(z)
α

x x ≤ δ, s ∈ [t + z, t + ε], β(z) < 1

(i) if limη↓0 supx∈(0,η) p(t−, x) < 1/α

(ii) if p(t−, ·) locally monotone in right neighborhood of any x > 0

• Proof

P
(
τ ≥ s, Xs− ≤ x

)
=

∫
g(s − t, z)dz

◦ F c.d.f. of p(t−, ·)

{ case (i) F is locally < 1/α Lipschitz

{ case (ii) F becomes locally < 1/α Lipschitz after 0
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◦ F c.d.f. of p(t−, ·)

{ case (i) F is locally < 1/α Lipschitz

{ case (ii) F becomes locally < 1/α Lipschitz after 0



C.d.f. estimates
• Step 0 : There is always a density! Smooth away from the front

• Step 1 : No possible jump of Λ in (t, t + ε), i.e.

◦ P(τ ≥ s, Xs− ≤ x)︸                ︷︷                ︸ ≤ β(z)
α

x x ≤ δ, s ∈ [t + z, t + ε], β(z) < 1

(i) if limη↓0 supx∈(0,η) p(t−, x) < 1/α
(ii) if p(t−, ·) locally monotone in right neighborhood of any x > 0

• Proof

P
(
τ ≥ s, Xs− ≤ x

)
=

∫ [
F
(
x + Λs− − Λt− − z

)
− F

(
Λs− − Λt− − z

)]︸                                                  ︷︷                                                  ︸
only local behavior counts

g(s − t, z)dz

◦ F c.d.f. of p(t−, ·)

{ case (i) F is locally < 1/α Lipschitz

{ case (ii) F becomes locally < 1/α Lipschitz after 0



Regularity estimates

• Step 1 : If P(τ ≥ s, Xs− ≤ x) ≤
β

α
x, x ≤ δ, s ∈ [t, t + ε], β < 1

⇒ Λ is 1/2-Hölder on [t, t + ε]

• Step 2 : If Λ is 1/2-Hölder on [t, t + ε]

⇒ p(s, x) ≤ Cxχ for s ∈ [t + ε/2, t + ε] and x ≤ δ

• Step 4 : If Λ is 1/2-Hölder on [t, t + ε]

⇒ p(s, x) ≤ Cx for s ∈ [t + ε/2, t + ε] and x ≤ δ and p is smooth

• Proof :

◦ pass from Hölder decay from Lipschitz with barrier lemma
(comparison of solutions)

◦ p Lipschitz at the boundary⇒ Λ Lipschitz

◦ X is a standard drifted Brownian motion



Regularity estimates

• Step 1 : If P(τ ≥ s, Xs− ≤ x) ≤
β

α
x, x ≤ δ, s ∈ [t, t + ε], β < 1

⇒ Λ is 1/2-Hölder on [t, t + ε]

• Proof Λs − Λt advance of front between t and s

Λs − Λt ≤ α

∫
P
(
y + inf

r∈[t,s]

{
Bs − Bt

}
≤ Λs − Λt

)
p(t, y)dy

≤ α

∫ Λs−Λt

0
· · · + α

∫ ∞

Λs−Λt

· · ·

≤ β
(
Λs − Λt

)
+ 2

∫ ∞

0
Φ
( y
√

s − t

)
p
(
t, y + Λs − Λt

)
dy

≤ β
(
Λs − Λt

)
+ C
√

s − t

{ Φ Gaussian survival function

• Step 2 : If Λ is 1/2-Hölder on [t, t + ε]

⇒ p(s, x) ≤ Cxχ for s ∈ [t + ε/2, t + ε] and x ≤ δ
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⇒ p(s, x) ≤ Cx for s ∈ [t + ε/2, t + ε] and x ≤ δ and p is smooth

• Proof :

◦ pass from Hölder decay from Lipschitz with barrier lemma
(comparison of solutions)

◦ p Lipschitz at the boundary⇒ Λ Lipschitz

◦ X is a standard drifted Brownian motion



Regularity estimates

• Step 1 : If P(τ ≥ s, Xs− ≤ x) ≤
β

α
x, x ≤ δ, s ∈ [t, t + ε], β < 1

⇒ Λ is 1/2-Hölder on [t, t + ε]

• Step 2 : If Λ is 1/2-Hölder on [t, t + ε]

⇒ p(s, x) ≤ Cxχ for s ∈ [t + ε/2, t + ε] and x ≤ δ

• Proof p satisfies Fokker-Planck{ Feynman-Kac

p(s, x) = E
[
p(s − ρ,Yρ)

∣∣∣Y0 = x
]

{ where dYr = αΛ̇s−rdr + dBr

{ ρ = inf{r ≥ 0 : Yr < (0, δ)} ∧ δ2, δ � 1, x ≤ δ/2

◦ regularity of p at the boundary! P{Yρ = 0}

p(s, x) ≤ P
(
ρ ≥ δ2) sup

r∈[0,δ2],y∈[0,δ]
p(s − r, y)

◦ probability to hit the boundary{ competition between B and Λ

{ but Λ 1/2 Hölder⇒ B wins with >0 probability
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⇒ p(s, x) ≤ Cx for s ∈ [t + ε/2, t + ε] and x ≤ δ and p is smooth

• Proof :

◦ pass from Hölder decay from Lipschitz with barrier lemma
(comparison of solutions)

◦ p Lipschitz at the boundary⇒ Λ Lipschitz

◦ X is a standard drifted Brownian motion
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⇒ Λ is 1/2-Hölder on [t, t + ε]
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◦ pass from Hölder decay from Lipschitz with barrier lemma
(comparison of solutions)

◦ p Lipschitz at the boundary⇒ Λ Lipschitz

◦ X is a standard drifted Brownian motion



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ u(t, x) is analytic in x > Λt ⇒ zeros of ∂xu(t, x) are isolated in x
away from the front

{ propagation of the zeros in time!

0

front



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ take an interval and control sign changes at right boundary

0

front



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ take a contour with a finite number of zeros (≈ ] sign changes)

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ from starting point, may draw a minimal curve of zeros

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ from starting point, may draw a minimal curve of zeros

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ by max principle, curves hitting the contour cannot meet

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ problem when zero curve touches the front

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ sign locally preserved under the curve: prove it ≥ 0

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ after hitting point of front by curve: u smooth, ∂xu < 0 locally

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ claim: ∂xu < 0 globally: argue by contradiction

0

front

contour



Propagation of monotonicity
• monotonicity propagates if ](sign changes ∂xu(t, ·)) are controlled

◦ a new ∂xu = 0 would contradict maximum principle

0

front

contour



Uniqueness
• Get a solution that is smooth except at some isolated times

◦ enters smooth regime after any singularity

◦ uniqueness by stability arguments

• Take two solutions (X,Λ) and (X′,Λ′)

◦ they satisfy main estimates! prove local uniqueness after 0
using the sole assumptions on u(0, ·)

|Λ − Λ′|[0,t]

≤ α
∣∣∣P( inf

s∈[0,t]

(
X0− + Bs − Λs

)
≤ 0

)
− P

(
inf

s∈[0,t]

(
X0− + Bs − Λ′s

)
≤ 0

)∣∣∣∣
≤ αP

(
0 ≤ inf

s∈[0,t]

(
X0− + Bs − Λ′s

)
≤ |Λ − Λ′|[0,t]

)
+ αP

(
0 ≤ inf

s∈[0,t]

(
X0− + Bs − Λs

)
≤ |Λ − Λ′|[0,t]

)

≤ |Λ − Λ′|[0,t] − Ψ
(
|Λ − Λ′|[0,t]

)
◦ elaborate on ( ) where Ψ is strictly positive on (0,+∞) (true

for a small piece of time only)
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