Supercooled Stefan problem in 1d: solutions beyond blow-up

François Delarue (Nice - J.-A. Dieudonné)

July, 042019

Joint work S. Nadtochiy (Chicago) and M. Shkolnikov (Princeton)

Part I. Motivation and Main results

Supercooling

- Liquid water may exist in metastable state under $0^{\circ} \mathrm{C}$
- small perturbations or contact with ice \Rightarrow solidification
- see the video ($)$
- formulated by Stefan [in late 19's] and Brillouin [early 20's]
- Description of the front of ice during solidification
- PDE point of view: heat equation with free boundary
\leadsto ill-posed in classical sense $\leadsto \leadsto$ speed of propagation may become infinite
\leadsto description up to the emergence of a singularity in the propagation of the front [Fasano et al., DiBenedetto et al., 80's]
- new interest in probability for several years: maths finance, neurosciences with singular mean field interaction
- purpose of the talk: go beyond singularities
\leadsto use a probabilistic approach of the problem

PDE formulation

- Work in dimension 1
- Denote by Λ_{t} the position of the front at time t
\leadsto ice below Λ_{t} and liquid above Λ_{t}
- $\Lambda_{0}=0$

PDE formulation

- Denote by Λ_{t} the position of the front at time t
\leadsto ice below Λ_{t} and liquid above Λ_{t}
- $\Lambda_{0}=0$

- initial profile for the temperature $u(0, x), x \geq 0$
- inside liquid phase \sim heat equation for $u(t, x), x>\Lambda_{t}$

PDE formulation

- Denote by Λ_{t} the position of the front at time t
- $\Lambda_{0}=0$

- initial profile for the temperature $u(0, x), x \geq 0$
- inside liquid phase \sim heat equation for $u(t, x), x>\Lambda_{t}$

$$
\partial_{t} u(t, x)-\frac{1}{2} \partial_{x x}^{2} u(t, x)=0, \quad x>\Lambda_{t}
$$

PDE formulation

- Denote by Λ_{t} the position of the front at time t
- $\Lambda_{0}=0$

\circ inside liquid phase \sim heat equation for $u(t, x), x>\Lambda_{t}$

$$
\partial_{t} u(t, x)-\frac{1}{2} \partial_{x x}^{2} u(t, x)=0, \quad x>\Lambda_{t}
$$

- (formal) boundary conditions

$$
u\left(t, \Lambda_{t}\right)=0, \quad \dot{\Lambda}_{t}=-\frac{\alpha}{2} \partial_{x} u\left(t, \Lambda_{t}\right)
$$

PDE formulation

- Denote by Λ_{t} the position of the front at time t
- $\Lambda_{0}=0$

\circ inside liquid phase \sim heat equation for $u(t, x), x>\Lambda_{t}$

$$
\partial_{t} u(t, x)-\frac{1}{2} \partial_{x x}^{2} u(t, x)=0, \quad x>\Lambda_{t}
$$

- (formal) boundary conditions

$$
u\left(t, \Lambda_{t}\right)=0, \quad \dot{\Lambda}_{t}=-\frac{\alpha}{2} \partial_{x} u\left(t, \Lambda_{t}\right)
$$

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- assume N particles and distance between sites is $\frac{1}{N}$
- black particles jump at exponential times, with $1 / 2$ probability to the left and $1 / 2$ to the right
\leadsto as long as they do not touch the front!
\leadsto when one particle hits the front, the front moves forward!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- may easily guess the difficulty
\leadsto take an overloaded initial condition
\leadsto instantaneous jump of the front!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- may easily guess the difficulty
\leadsto take an overloaded initial condition
\leadsto instantaneous jump of the front!

Particle system [Chayes Swindle, Dembo and Tsai]

- Regard $-u(t, \cdot)$ as a density (with properly normalized initial condition)
- Provide particle description of the dynamics $(\alpha=1)$

- may easily guess the difficulty
\leadsto take an overloaded initial condition
\leadsto instantaneous jump of the front!

Continuous version[D. et al., Hambly et al., N. S.]

- May easily replace the discrete dynamics by continuous dynamics inside the liquid phase
- N particles
- evolve like independent Brownian motions before one them touches the front
- each time one particle is absorbed by the front, the front receives an upward kick of size α / N
\leadsto particle $\sharp i \in\{1, \cdots, N\}$

$$
\begin{aligned}
& X_{t}^{i}=X_{0}^{i}+B_{t}^{i}, \quad t \leq \tau^{i}=\inf \left\{s \geq 0: X_{s}^{i} \leq \Lambda_{s}\right\} \\
& \Lambda_{t}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\{\tau i \leq t\}}
\end{aligned}
$$

$\circ X_{0}^{1}, \cdots, X_{0}^{N} \Perp$ initial conditions, $B^{1}, \cdots, B^{N} \Perp$ Brownian motions

- reformulate in terms of $X_{t}^{i}-\Lambda_{t}$ (distance from particle to front)

Continuous version[D. et al., Hambly et al., N. S.]

- May easily replace the discrete dynamics by continuous dynamics inside the liquid phase
- N particles
- evolve like independent Brownian motions before one them touches the front
- each time one particle is absorbed by the front, the front receives an upward kick of size α / N

$$
\begin{aligned}
& \quad \leadsto \text { particle } \sharp i \in\{1, \cdots, N\} \\
& X_{t}^{i}-\Lambda_{t}=X_{0}^{i}+B_{t}^{i}-\Lambda_{t}, \quad t \leq \tau^{i}=\inf \left\{s \geq 0: X_{s}^{i}-\Lambda_{t} \leq 0\right\} \\
& \Lambda_{t}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau \tau^{j} \leq t\right\}} \\
& \circ X_{0}^{1}, \cdots, X_{0}^{N} \Perp \text { initial conditions, } B^{1}, \cdots, B^{N} \Perp \text { Brownian }
\end{aligned}
$$ motions

\circ reformulate in terms of $X_{t}^{i}-\Lambda_{t}$ (distance from particle to front)

Probabilistic formulation

- (Formal) mean field limit \sim provide the dynamics of one typical particle within the population

$$
X_{t}=X_{0}+B_{t}-\alpha \mathbb{P}(\tau \leq t), \quad t \leq \tau=\inf \left\{s \geq 0: X_{s} \leq 0\right\}
$$

\leadsto attention: here, focus on the distance from the particle to the front

- front is here given by $\Lambda_{t}=\alpha \mathbb{P}(\tau \leq t)$
- Formal connection with Stefan problem

$$
u\left(t, x+\Lambda_{t}\right)=-\underbrace{\frac{d}{d x} \mathbb{P}\left(X_{t} \in[x, x+d x], t<\tau\right)}_{p(t, x)}
$$

Probabilistic formulation

- (Formal) mean field limit \sim provide the dynamics of one typical particle within the population

$$
X_{t}=X_{0}+B_{t}-\alpha \mathbb{P}(\tau \leq t), \quad t \leq \tau=\inf \left\{s \geq 0: X_{s} \leq 0\right\}
$$

\leadsto attention: here, focus on the distance from the particle to the front

- front is here given by $\Lambda_{t}=\alpha \mathbb{P}(\tau \leq t)$
- Formal connection with Stefan problem

$$
u\left(t, x+\Lambda_{t}\right)=-\underbrace{\frac{d}{d x} \mathbb{P}\left(X_{t} \in[x, x+d x], t<\tau\right)}_{p(t, x)}
$$

- easily guess the difficulty: mass may accumulate at $x=0$
$\leadsto p$ is smooth at the boundary? \Leftrightarrow differentiability of Λ ?

$$
\left.\dot{\Lambda}_{t}=\frac{\alpha}{2} \partial_{x} p(t, 0) \quad \text { (hitting time } d X_{t}=-\dot{\Lambda}_{t} d t+d B_{t}, t\right)
$$

\leadsto not even clear if p may satisfy Dirichlet condition

Probabilistic formulation

- (Formal) mean field limit \sim provide the dynamics of one typical particle within the population

$$
X_{t}=X_{0}+B_{t}-\alpha \mathbb{P}(\tau \leq t), \quad t \leq \tau=\inf \left\{s \geq 0: X_{s} \leq 0\right\}
$$

\leadsto attention: here, focus on the distance from the particle to the front
\circ front is here given by $\Lambda_{t}=\alpha \mathbb{P}(\tau \leq t)$

- Formal connection with Stefan problem

$$
\int_{\Lambda_{t}}^{\infty}\left(\partial_{t} u(t, x)-\frac{1}{2} \partial_{x}^{2} u(t, x)\right) d x=0 \Rightarrow-\frac{1}{\alpha} \dot{\Lambda}_{t}=\frac{1}{2} \partial_{x} u\left(t, \Lambda_{t}\right)
$$

- easily guess the difficulty: mass may accumulate at $x=0$
$\sim p$ is smooth at the boundary? \Leftrightarrow differentiability of Λ ?

$$
\left.\dot{\Lambda}_{t}=\frac{\alpha}{2} \partial_{x} p(t, 0) \quad \text { (hitting time } d X_{t}=-\dot{\Lambda}_{t} d t+d B_{t}, t\right)
$$

\leadsto not even clear if p may satisfy Dirichlet condition

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto natural solution (sequentially ordered)

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto natural solution (sequentially ordered)

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto natural solution (sequentially ordered)

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto natural solution (sequentially ordered)

$\leadsto \Lambda_{t}-\Lambda_{t-}=1 / N$

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto non-sequentially ordered: solution with $\Lambda_{t}-\Lambda_{t-}=3 / N$

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered \leadsto non-sequentially ordered: solution with $\Lambda_{t}-\Lambda_{t-}=3 / N$

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto non-sequentially ordered: solution with $\Lambda_{t}-\Lambda_{t-}=3 / N$

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto non-sequentially ordered: solution with $\Lambda_{t}-\Lambda_{t-}=3 / N$

- need condition to force jumps to be ordered

Physical solution

- Possible jumps of Λ (Λ taken càd-làg)

$$
\Lambda_{t}-\Lambda_{t-}=\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{\left\{\tau^{j}=t\right\}}
$$

- too weak description of the jumps: jumps are not ordered
\leadsto non-sequentially ordered: solution with $\Lambda_{t}-\Lambda_{t-}=3 / N$

- To get jump $\geq x$ at time t, need

$$
\text { contribution to the jump of particles } \leq x
$$

Physical solution

- Possible jumps of Λ
- original description of the jumps is too weak
- To get jump $\geq x$ at time t, need the mass

$$
\underbrace{\frac{\alpha}{N} \sum_{j=1}^{N} \mathbf{1}_{X_{t-}^{j} \in(0, x]}} \quad \geq x
$$

contribution to the jump of particles $\leq x$

- Write the mean field equation in the form

$$
\begin{aligned}
& X_{t}=X_{0}+B_{t}-\alpha \mathbb{P}(\tau \leq t), \quad t \leq \tau=\inf \left\{s \geq 0: X_{s} \leq 0\right\} \\
& \leadsto \Lambda_{t}=\alpha \mathbb{P}(\tau \leq t)
\end{aligned}
$$

- require

$$
\Lambda_{t}-\Lambda_{t-}=\inf \left\{x \geq 0: \alpha \mathbb{P}\left(X_{t-} \in(0, x]\right)<x\right\}
$$

- \exists by tightness from particle system using M1-topology for Λ

Further prospects

- Application to neurosciences [Carrillo et al., D. et al.]
\circ regard $-X$ as the firing potential of a neuron
$\sim \tau$ is the spiking time of the neuron
- $\alpha \leadsto$ excitation parameter \Rightarrow neurons are more likely to fire when one of them has spiked
- Application to finance [Hambly et al., N. S.]
- regard X as the wealth of a company
$\leadsto \tau$ is the default time of the company
- $\alpha \sim$ intensity of the default
- More general types of noise
- how do the fluctuations impact the singularity?
\leadsto may have connection with mean field rough equations
[Cass Lyons, Deuschel et al., Bailleul et al.]

Further prospects

- Application to neurosciences [Carrillo et al., D. et al.]
\circ regard $-X$ as the firing potential of a neuron
$\sim \tau$ is the spiking time of the neuron
- $\alpha \leadsto$ excitation parameter \Rightarrow neurons are more likely to fire when one of them has spiked
- Application to finance [Hambly et al., N. S.]
- regard X as the wealth of a company
$\leadsto \tau$ is the default time of the company
- $\alpha \sim$ intensity of the default
- More general types of noise
- may put a common noise
\leadsto get an SPDE with a free boundary [Hambly Ledger Sojmark]

Main results

- Assume: $u(0, \cdot)$ is bounded and changes monotonicity finitely often on compacts
- take physical solution (X, Λ)
- Then: for any $t>0, p(t-, \cdot)$ has two same properties as $u(0, \cdot)$
(i) If $\lim \sup _{x \downarrow 0} x^{-1} p(t-, x)<\infty$, then $\Lambda \in C^{1}([t, t+\epsilon))$ for some $\epsilon>0$
(ii) If $\lim \sup _{x \downarrow 0} x^{-1} p(t-, x)=\infty$ but $\lim _{x \downarrow 0} p(-t, x)<\frac{1}{\alpha}$, then Λ is $1 / 2$-Hölder continuous on $[t, t+\epsilon$) for some $\epsilon>0$
(iii) If $\lim _{x \downarrow 0} p(t-, x) \geq \frac{1}{\alpha}$, then may jump

In all cases, $\exists \epsilon>0: \Lambda \in C^{1}((t, t+\epsilon))$ and $p(s, \cdot), s \in(t, t+\epsilon)$, solves

$$
\partial_{t} p=\frac{1}{2} \partial_{x x} p+\dot{\Lambda}_{t} \partial_{x} p, p(\cdot, 0)=0 \text { on }(t, t+\epsilon), \quad \dot{\Lambda}_{s}=\frac{\alpha}{2} \partial_{x} p(s, 0)
$$

- Moreover: uniqueness

Part II. Elements of proof

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front - shift of Brownian motion up to τ

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)}_{\text {remaining mass } \leq x} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$

C.d.f. estimates

- Step 0 : There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$
(ii) if $p(t-, \cdot)$ locally monotone in right neighborhood of any $x>0$

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$
(ii) if $p(t-, \cdot)$ locally monotone in right neighborhood of any $x>0$

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$
(ii) if $p(t-, \cdot)$ locally monotone in right neighborhood of any $x>0$ after jump

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$
(ii) if $p(t-, \cdot)$ locally monotone in right neighborhood of any $x>0$

- Proof

$$
\begin{aligned}
& \mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right) \\
& \leq \int \mathbb{P}\left(\Lambda_{s-}-\Lambda_{t-} \leq y+B_{s}-B_{t} \leq x+\Lambda_{s-}-\Lambda_{t-}\right) p(t-, y) d y \\
& =\int\left[F\left(x+\Lambda_{s-}-\Lambda_{t-}-z\right)-F\left(\Lambda_{s-}-\Lambda_{t-}-z\right)\right] g(s-t, z) d z
\end{aligned}
$$

C.d.f. estimates

- Step 0: There is always a density! Smooth away from the front
- Step 1: No possible jump of Λ in $(t, t+\epsilon)$, i.e.

$$
\circ \underbrace{\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right)} \leq \frac{\beta(z)}{\alpha} x \quad x \leq \delta, s \in[t+z, t+\epsilon], \beta(z)<1
$$

(i) if $\lim _{\eta \downarrow 0} \sup _{x \in(0, \eta)} p(t-, x)<1 / \alpha$
(ii) if $p(t-, \cdot)$ locally monotone in right neighborhood of any $x>0$

- Proof

$$
\begin{aligned}
& \mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right) \\
& =\int \underbrace{\left[F\left(x+\Lambda_{s-}-\Lambda_{t-}-z\right)-F\left(\Lambda_{s-}-\Lambda_{t-}-z\right)\right]}_{\text {only local behavior counts }} g(s-t, z) d z
\end{aligned}
$$

$\circ F$ c.d.f. of $p(t-, \cdot)$
\leadsto case (i) F is locally $<1 / \alpha$ Lipschitz
\leadsto case (ii) F becomes locally $<1 / \alpha$ Lipschitz after 0

Regularity estimates

- Step 1: If $\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right) \leq \frac{\beta}{\alpha} x, x \leq \delta, s \in[t, t+\epsilon], \beta<1$ $\Rightarrow \Lambda$ is $1 / 2$-Hölder on $[t, t+\epsilon]$

Regularity estimates

- Step 1: If $\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right) \leq \frac{\beta}{\alpha} x, x \leq \delta, s \in[t, t+\epsilon], \beta<1$ $\Rightarrow \Lambda$ is $1 / 2$-Hölder on $[t, t+\epsilon]$
- Proof $\Lambda_{s}-\Lambda_{t}$ advance of front between t and s

$$
\begin{aligned}
\Lambda_{s}-\Lambda_{t} & \leq \alpha \int \mathbb{P}\left(y+\inf _{r \in[t, s]}\left\{B_{s}-B_{t}\right\} \leq \Lambda_{s}-\Lambda_{t}\right) p(t, y) d y \\
& \leq \alpha \int_{0}^{\Lambda_{s}-\Lambda_{t}} \cdots+\alpha \int_{\Lambda_{s}-\Lambda_{t}}^{\infty} \cdots \\
& \leq \beta\left(\Lambda_{s}-\Lambda_{t}\right)+2 \int_{0}^{\infty} \Phi\left(\frac{y}{\sqrt{s-t}}\right) p\left(t, y+\Lambda_{s}-\Lambda_{t}\right) d y \\
& \leq \beta\left(\Lambda_{s}-\Lambda_{t}\right)+C \sqrt{s-t}
\end{aligned}
$$

$\sim \Phi$ Gaussian survival function

Regularity estimates

- Step 1: If $\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right) \leq \frac{\beta}{\alpha} x, x \leq \delta, s \in[t, t+\epsilon], \beta<1$ $\Rightarrow \Lambda$ is $1 / 2$-Hölder on $[t, t+\epsilon]$
- Step 2: If Λ is $1 / 2$-Hölder on $[t, t+\epsilon]$

$$
\Rightarrow p(s, x) \leq C x^{\chi} \text { for } s \in[t+\epsilon / 2, t+\epsilon] \text { and } x \leq \delta
$$

- Proof p satisfies Fokker-Planck \leadsto Feynman-Kac

$$
p(s, x)=\mathbb{E}\left[p\left(s-\rho, Y_{\rho}\right) \mid Y_{0}=x\right]
$$

\leadsto where $d Y_{r}=\alpha \dot{\Lambda}_{s-r} d r+d B_{r}$

$$
\leadsto \rho=\inf \left\{r \geq 0: Y_{r} \notin(0, \delta)\right\} \wedge \delta^{2}, \delta \ll 1, x \leq \delta / 2
$$

- regularity of p at the boundary $\leadsto \mathbb{P}\left\{Y_{\rho}=0\right\}$

$$
p(s, x) \leq \mathbb{P}\left(\rho \geq \delta^{2}\right) \sup _{r \in\left[0, \delta^{2}\right], y \in[0, \delta]} p(s-r, y)
$$

\circ probability to hit the boundary \leadsto competition between B and Λ \sim but $\Lambda 1 / 2$ Hölder $\Rightarrow B$ wins with >0 probability

Regularity estimates

- Step 1: If $\mathbb{P}\left(\tau \geq s, X_{s-} \leq x\right) \leq \frac{\beta}{\alpha} x, x \leq \delta, s \in[t, t+\epsilon], \beta<1$ $\Rightarrow \Lambda$ is $1 / 2$-Hölder on $[t, t+\epsilon]$
- Step 2: If Λ is $1 / 2$-Hölder on $[t, t+\epsilon]$

$$
\Rightarrow p(s, x) \leq C x^{\chi} \text { for } s \in[t+\epsilon / 2, t+\epsilon] \text { and } x \leq \delta
$$

- Step 4 : If Λ is $1 / 2$-Hölder on $[t, t+\epsilon]$
$\Rightarrow p(s, x) \leq C x$ for $s \in[t+\epsilon / 2, t+\epsilon]$ and $x \leq \delta$ and p is smooth
- Proof:
- pass from Hölder decay from Lipschitz with barrier lemma (comparison of solutions)
$\circ p$ Lipschitz at the boundary $\Rightarrow \Lambda$ Lipschitz
$\circ X$ is a standard drifted Brownian motion

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled $\circ u(t, x)$ is analytic in $x>\Lambda_{t} \Rightarrow$ zeros of $\partial_{x} u(t, x)$ are isolated in x away from the front
\leadsto propagation of the zeros in time!

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- take an interval and control sign changes at right boundary

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- take a contour with a finite number of zeros $(\approx \sharp$ sign changes $)$

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- from starting point, may draw a minimal curve of zeros

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- from starting point, may draw a minimal curve of zeros

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- by max principle, curves hitting the contour cannot meet

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- problem when zero curve touches the front

Propagation of monotonicity

- monotonicity propagates if $\sharp\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- sign locally preserved under the curve: prove it ≥ 0

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- after hitting point of front by curve: u smooth, $\partial_{x} u<0$ locally

Propagation of monotonicity

- monotonicity propagates if $\#\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- claim: $\partial_{x} u<0$ globally: argue by contradiction

Propagation of monotonicity

- monotonicity propagates if $\sharp\left(\right.$ sign changes $\left.\partial_{x} u(t, \cdot)\right)$ are controlled
- a new $\partial_{x} u=0$ would contradict maximum principle

Uniqueness

- Get a solution that is smooth except at some isolated times
- enters smooth regime after any singularity
- uniqueness by stability arguments
- Take two solutions (X, Λ) and $\left(X^{\prime}, \Lambda^{\prime}\right)$
- they satisfy main estimates! prove local uniqueness after 0 using the sole assumptions on $u(0, \cdot)$

$$
\begin{aligned}
& \left|\Lambda-\Lambda^{\prime}\right|_{[0, t]} \\
& \leq \alpha\left|\mathbb{P}\left(\inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}\right) \leq 0\right)-\mathbb{P}\left(\inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}^{\prime}\right) \leq 0\right)\right| \\
& \leq \alpha \mathbb{P}\left(0 \leq \inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}^{\prime}\right) \leq\left|\Lambda-\Lambda^{\prime}\right|_{[0, t]}\right) \\
& \quad+\alpha \mathbb{P}\left(0 \leq \inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}\right) \leq\left|\Lambda-\Lambda^{\prime}\right|_{[0, t]}\right)
\end{aligned}
$$

Uniqueness

- Get a solution that is smooth except at some isolated times
- enters smooth regime after any singularity
- uniqueness by stability arguments
- Take two solutions (X, Λ) and $\left(X^{\prime}, \Lambda^{\prime}\right)$
- they satisfy main estimates! prove local uniqueness after 0 using the sole assumptions on $u(0, \cdot)$

$$
\begin{aligned}
& \left|\Lambda-\Lambda^{\prime}\right|_{[0, t]} \\
& \leq \alpha\left|\mathbb{P}\left(\inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}\right) \leq 0\right)-\mathbb{P}\left(\inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}^{\prime}\right) \leq 0\right)\right| \\
& \leq \alpha \mathbb{P}\left(0 \leq \inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}^{\prime}\right) \leq\left|\Lambda-\Lambda^{\prime}\right|_{[0, t]}\right) \\
& \quad+\alpha \mathbb{P}\left(0 \leq \inf _{s \in[0, t]}\left(X_{0-}+B_{s}-\Lambda_{s}\right) \leq\left|\Lambda-\Lambda^{\prime}\right|_{[0, t]}\right) \\
& \leq\left|\Lambda-\Lambda^{\prime}\right|[0, t]-\Psi\left(\left|\Lambda-\Lambda^{\prime}\right|_{[0, t]}\right)
\end{aligned}
$$

- elaborate on $(\bigcirc) \rightsquigarrow$ where Ψ is strictly positive on $(0,+\infty)$ (true for a small piece of time only)

