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Part 1. Motivation and Main results



Supercooling

e Liquid water may exist in metastable state under 0°C

o small perturbations or contact with ice = solidification

o see the video ()

o formulated by Stefan [in late 19’s] and Brillouin [early 20’s]
e Description of the front of ice during solidification

o PDE point of view: heat equation with free boundary

~» ill-posed in classical sense ~» speed of propagation may
become infinite

~» description up to the emergence of a singularity in the
propagation of the front [Fasano et al., DiBenedetto et al., 80’s]

o new interest in probability for several years: maths finance,
neurosciences with singular mean field interaction

o | purpose of the talk ‘: go beyond singularities

~» use a probabilistic approach of the problem



PDE formulation

e Work in dimension 1

e Denote by A; the position of the front at time ¢
~» ice below A; and liquid above A,
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Continuous version(D. et al., Hambly et al., N. S.]

e May easily replace the discrete dynamics by continuous dynamics
inside the liquid phase

e N particles

o evolve like independent Brownian motions before one them
touches the front

o each time one particle is absorbed by the front, the front
receives an upward kick of size a/N

~> particle §i € {1,--- , N}
X, =X,+B,, t<7=inf{s>0:X <A,

N
a
A= N JZ:‘ 1<y

o Xé, . ,Xév 1 initial conditions, B!, --- , BN 1 Brownian
motions

o reformulate in terms of Xf — A, (distance from particle to front)
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Probabilistic formulation
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X, =Xo+B —aP(r<t), t<t=inf{s>0:X, <0}

~» attention: here, focus on the distance from the particle to
the front

o front is here given by A, = aP(r < 1)

e Formal connection with Stefan problem
0 1., 1. 1
(B, x) = >02u(t, x))dx = 0 = ——A, = Sdu(t, A,)
A, 2 a 2
o easily guess the difficulty: mass may accumulate at x = 0
~» p is smooth at the boundary? < differentiability of A?
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Physical solution

e Possible jumps of A
o original description of the jumps is too weak

e To get jump > x at time #, need the mass

o
N Z Ly e 2 X
j=1
| S—
contribution to the jump of particles < x

e Write the mean field equation in the form
X, =Xo+B;—aP(r<t), t<t=inf{s>0:X; <0}

’\/)A[ = G’P(T < t)

o require
A —A_ = inf{x >0:aP(X,.- € (0,x]) < x}

e J by tightness from particle system using M 1-topology for A



Further prospects

e Application to neurosciences [Carrillo et al., D. et al.]
o regard —X as the firing potential of a neuron

~» T is the spiking time of the neuron

o @ ~» excitation parameter = neurons are more likely to fire
when one of them has spiked

e Application to finance [Hambly et al., N. S.]
o regard X as the wealth of a company
~» 7 is the default time of the company
o @ ~» intensity of the default
e More general types of noise
o how do the fluctuations impact the singularity?

~» may have connection with mean field rough equations
[Cass Lyons, Deuschel et al., Bailleul et al.]
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e Application to neurosciences [Carrillo et al., D. et al.]
o regard —X as the firing potential of a neuron

~» T is the spiking time of the neuron

o @ ~» excitation parameter = neurons are more likely to fire
when one of them has spiked

e Application to finance [Hambly et al., N. S.]
o regard X as the wealth of a company
~» 7 is the default time of the company
o @ ~» intensity of the default
e More general types of noise
o may put a common noise

~» get an SPDE with a free boundary [Hambly Ledger
Sojmark]



Main results

° : u(0, -) is bounded and changes monotonicity finitely
often on compacts

o take physical solution (X, A)
. : for any ¢ > 0, p(t—, -) has two same properties as u(0, -)

(i) Iflimsup, o x~'p(t—,x) < oo, then A € C'([t,1 + €)) for some
€e>0

(i) If limsup, o x~'p(t—,x) = oo but limyo p(=1,x) < 1, then A is
1/2-Holder continuous on [t, ¢ + €) for some € > 0

(iii) If limyo p(t—,x) > 1, then may jump

In all cases, e > 0: A € C'((t,1 + €)) and p(s, ), s € (1,1 + €), solves
1 . . 1
8tp = Eaxxp + Atax > p(’o) = 0 on (t9t+ 6)9 AS = _axp(s’ O)

2
e | Moreover | uniqueness



Part II. Elements of proof



C.d.f. estimates

° : There is always a density! Smooth away from the front

o shift of Brownian motion up to 7
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C.d.f. estimates

° : There is always a density! Smooth away from the front

. : No possible jump of Ain (¢, + €), i.e.

B[)

oPr>s, X;- <x)<—x x<0,s€[t+z,t+€],B(2) <1
a

(1) if limy, o SUPye(0,) p(t—x) < 1/a
(i1) if p(¢—, ) locally monotone in right neighborhood of any x > 0

o [Proof]

P(r > s, X;- < X)

= f[F(x + Ay = A —2) = F(Ay- — Ai— — 2)]g(s — t,2)dz
only local behavior counts
o Fc.df. of p(t—,-)
~» case (i) F is locally < 1/a Lipschitz

~» case (ii) F' becomes locally < 1/a Lipschitz after 0
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Regularity estimates

0: IfP(TZS,XS_Sx)s'gx,xsé,se[t,t+e],ﬁ<1

= Ais 1/2-Holder on [¢,t + €]
° Ay — A, advance of front between 7 and s

As— A <a f P(y+ inf (B, — Bi} < A, — A, )p(t, y)dy

relt,s]

Ag—As )
0 A=Ay

<B(As - A)+2 fo " a( vy_)p(r,y + Ay~ A)dy

§=10

<BAs—A)+CVs—1

~» @ Gaussian survival function



Regularity estimates

0: IfP(TZS,XS_Sx)s'gx,xﬁé,se[t,t+e],ﬁ<1

= Ais 1/2-Holder on [z, + €]

. ; If A is 1/2-Holder on [¢, 7 + €]

=ps,x) < Cx¥forse[t+e€/2,t+elandx <6

. p satisfies Fokker-Planck ~» Feynman-Kac

pls.) = B|p(s = p. Y)[Yo =4
~> where dY, = aA,_,dr + dB,
~p=inf{r>0:Y, ¢ (0,0)}A6%, 6 < 1,x<5/2
o regularity of p at the boundary «» P{Y, = 0}

ps,x)<P(p>6°) sup  p(s—ry)
rel0,6%1,y€[0,6]

o probability to hit the boundary ~»> competition between B and A

~> but A 1/2 Holder = B wins with >0 probability



Regularity estimates

0: IfP(r > s, X Sx)s'gx,xsé,se [t,t+€el,B< 1
= Ais 1/2-Holder on [z, + €]

. : If A is 1/2-Holder on [1,7 + €]

=ps,x) <Cx¥forse[t+e€/2,t+elandx <6

. : If A is 1/2-Holder on [z, ¢ + €]

= p(s,x) < Cxfors e [t+€/2,t + €] and x < 6 and p is smooth

*Proof |

o pass from Holder decay from Lipschitz with barrier lemma
(comparison of solutions)

o p Lipschitz at the boundary = A Lipschitz

o X is a standard drifted Brownian motion



Propagation of monotonicity

e monotonicity propagates if §(sign changes d,u(z, -)) are controlled

o u(t, x) is analytic in x > A; = zeros of d,u(t, x) are isolated in x
away from the front

~» propagation of the zeros in time!
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Propagation of monotonicity

e monotonicity propagates if #(sign changes d,u(t, -)) are controlled
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e monotonicity propagates if §(sign changes d,u(z, -)) are controlled

o problem when zero curve touches the front
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Propagation of monotonicity

e monotonicity propagates if §(sign changes d,u(z, -)) are controlled
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e monotonicity propagates if §(sign changes d,u(z, -)) are controlled

o after hitting point of front by curve: u smooth, d,u < 0 locally
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Propagation of monotonicity

e monotonicity propagates if §(sign changes d,u(z, -)) are controlled

o claim: dyu < 0 globally: argue by contradiction
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Propagation of monotonicity

e monotonicity propagates if §(sign changes d,u(z, -)) are controlled

o anew d,u = 0 would contradict maximum principle
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Uniqueness

e Get a solution that is smooth except at some isolated times
o enters smooth regime after any singularity
o uniqueness by stability arguments

e Take two solutions (X, A) and (X', A”)

o they satisfy main estimates! prove local uniqueness after 0
using the sole assumptions on u(0, -)

IA — Aljon
<]P'fX_B—A<—P'fX_B—A’<'
< ofP( gf (Xo- + 5 = A) < 0) =P Jaf (to- + 5. - A7) <0)
< < 1 —A) < — A
—GP(O—Sél[})g](XO—+Bs A <A Al[o,z])

+aP(0 < Sggﬂ(xo_ +B, = As) < IA = Nljo)



Uniqueness

e Get a solution that is smooth except at some isolated times
o enters smooth regime after any singularity
o uniqueness by stability arguments

e Take two solutions (X, A) and (X', A”)

o they satisfy main estimates! prove local uniqueness after 0
using the sole assumptions on u(0, -)

IA — Aljon

< o|P( inf (Xo_ + B, — A,) < 0) = P( inf (Xo_ + B, — A’) < '
< ofP( gf (Xo- + 5 = A) < 0) =P Jaf (to- + 5. - A7) <0)
< < 1 — A< — A
<aP(0< inf (Xo-+ By~ A7) <IA = N'lo)

+aP(0 < Sggﬂ(xo_ +B, = As) < IA = Nljo)

<A = Nl —PUA = Alljo.g)

o elaborate on (@) ~» where W is strictly positive on (0, +00) (true
for a small piece of time only)
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