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1. THE MODEL
We model neurons in interactions. The model is known in the literature as the generalized integrate-and-fire (GIF) or as the Escape noise model.
Key results. In the Mean-Field (M-F) limit - where the number of neurons goes to infinity - we study the long time behavior of the network. We show that, depending on the average interaction strength,
either the system can stabilize to a steady states or oscillate indefinitely. We develop specific mathematical tools to classify the stability of the invariant measures and predict the emergence of spontaneous
oscillations.

We considerN ≥ 1 neurons, characterized by their membrane
potential (V i

t )t≥0, i ∈ 1, .., N .
Between the spikes, (V i

t )t≥0 solves:

dVt = b(Vt)dt

Neuron i spike randomly at time t with rate f(V i
t ). Then

1. The potential of neuron i is reset to zero: V i
t = 0

2. The other neurons j 6= i receive a kick:
V j

t = V j
t− + Ji→j
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The parameters. (a) The drift term b : R+ → R, it gives the
sub-threshold dynamics. (b) The rate function f : R+ → R+:
f(v)dt is the probability for a neuron with a potential v to spike
between t and t + dt. (c) The connectivity matrix (Ji→j)i,j
(deterministic and constant in time). (d) The initial conditions
of the neuron.

A0. For all x ∈ R+, b(x) = b0 − κx and f(x) = (x+)p, for
some constants b0, κ ≥ 0 and p ≥ 1.

2. THE MEAN-FIELD LIMIT

A1. Assume the initial conditions V 1
0 , ...V

N
0 are i.i.d. with probability law ν ∈ M(f2), that is:

∫
R f

2(x)ν(dx) <∞.
A2. Assume Ji→j = J

N for some constant J ≥ 0.
AsN → +∞, L((V it )t≥0)→N L((Vt)t≥0) where (Vt)t≥0 solves the Mckean-Vlasov equation

(1)
d

dt
Vt = b(Vt) + JE f(Vt) and Vt jumps to 0 with rate f(Vt).

↪→ E f(Vt) is the mean number of spikes per unit of time in the network.

Let ν(t, ·) be the law of Vt at time t ≥ 0. It solves (weakly) the Fokker-Planck PDE:

∂

∂t
ν(t, x) = −

∂

∂x
[(b(x) + Jrt)ν(t, x)]− f(x)ν(t, x),

ν(0, ·) = ν, rt =

∫ ∞
0

f(x)ν(t, x)dx,

ν(t, 0) =
rt

b(0) + Jrt
.

↪→ rt = E f(Vt); it is the key quantity to study to understand the model.
Theorem 1 The mean-field SDE (1) has a path-wise unique solution (Vt)t≥0. Moreover, it holds that supt≥0 E f(Vt) <∞.

3. VOLTERRA EQUATION
The difficulty: there is no closed formula for t 7→ E f(Vt).
The Ito formula gives

d

dt
E f(Vt) = E f ′(Vt) [b(Vt) + J E f(Vt))]− E f2

(Vt).

In particular d
dt E f(Vt)|t=0 depends on E f(V0) but also on

E f ′(V0) and on E f2(V0).
The linearized process. Given an “external current” (at)t≥0 ∈
C(R+) we define Y ν,at , starting at time swith law ν, solution of:

(2)
d

dt
Y
ν,a
t,s = b(Y

ν,a
t,s ) + at + jumps to 0 at rate f(Y

ν,a
t,s )

The survival function and its density. Define

τ
ν,a
s := time of the first jump of Y ν,at,s , r

ν
a(t, s) = E f(Y

ν,a
t,s )

H
ν
a (t, s) := P(τ

ν,a
s > t), K

ν
a (t, s) := −

d

dt
P(τ

ν,a
s > t).

start with ν at s [u, u+du]
rνa(u, s)

[t, t+dt]
Kδ0
a (t, u)

Kν
a (t, s)

We have rνa(t, s) = limδ↓0
1
δ P(there is a jump in [t, t+ δ]).

Proposition 1 rνa(t, s) is the solution of the non-homogenous Volterra
equation:

r
ν
a(t, s) = K

ν
a (t, s) +

∫ t

s

K
δ0 (t, u)r

ν
a(u, s)du.

↪→ at := Jrt = J E f(Vt) is the unique solution of a = Jrνa . When
a ≡ α is constant, it reduces to a linear convolution Volterra equation. We
used Laplace transform to study it. The asymptotic of t 7→ rνα(t) is related

to the location of the zeros of the Laplace transform of t 7→ H
δ0
α (t).

Theorem 2 (See [3] ) Given b and f , one can find a weight J0 > 0
s.t. for all J ∈ [0, J0], the mean-filed SDE has an unique invariant
measure which is globally stable.

Example: initial measure ν = δ0.5, J = 1.0, µ = 0.1: evolution of
the law of Vt as t goes to infinity.

4. THE INVARIANT MEASURES
Theorem 3 The invariant probability measures of the mean-field SDE
(1) are {ν∞α | α = Jγ(α), α ≥ 0}, with

ν
∞
α (x)dx :=

γ(α)

α+ b(x)
exp

(
−
∫ x

0

f(y)

α+ b(y)
dy

)
1x∈[0,σα]dx,

where σα is the limit of the deterministic flow of the ODE driven by
b(x) + α and γ(α) is the normalizing factor. It holds that ν∞α (f) =
γ(α).

Example: f(x) = x3, b(x) = 0.28− x, J = 2: there are three
invariant measures (α1 ≈ 0.01, α2 ≈ 0.34 and α3 ≈ 3.83)

5. LOCAL STABILITY
What happens for larger weights J?
Def. EquipM(f2) with d(ν, µ) =

∫
R [1 + f(x)]|ν − µ|(dx).

Let ν∞α be an invariant measure of (1). We say it is locally stable
if there exists some ε > 0 and C, λ > 0 such that:

∀ν ∈ M(f
2
), d(ν, ν

∞
α ) < ε =⇒ d(νt, ν

∞
α ) ≤ Ce−λt,

with νt = L(Vt). Our key tool to study the stability is to look at
the zeros of

Φα : M(f2)× L∞λ → L∞λ
(ν, h) 7→ (α+ h)− Jrνα+h

Here L∞λ = {x : R+ → R | ||x||∞λ < ∞} with ||x||∞λ =

esssupt≥0|x(t)|eλt.

Proposition 2 The function Φα is continuous with respect to ν and
C1 with respect to h. Moreover, there exists a function Θα such that
∀0 < λ < λα, Θα ∈ L1

λ and

∀c ∈ L∞λ , DhΦ(ν
∞
α , 0) · c = c−Θα ∗ c.

The function Θα is known explicitly in term of f , b and α.

Let Θ̂α(z) the Laplace transform of Θα.

Theorem 4 Assume all the complex roots of z 7→ Θ̂α(z) − 1 are
located on the left half-plane. Then the invariant measure ν∞α is locally
stable.

Examples for which Theorem 4 applies. For J small enough it is
always satisfied. If b ≡ 0, it is satisfied (and the invariant mea-
sure is always locally stable, whatever the value of the weight J).
When Theorem 4 does not apply, it means that spontaneous oscil-
lations may exists!

6. SPONTANEOUS OSCILLATIONS: HOPF BIFURCATION
A3. Assume there is some α0 s.t. Θ̂α0 has two (simple) complex
roots i/β0 and −i/β0. Assume moreover that the roots of Θ̂α
crosses the imaginary axis with “non vanishing speed” at α = α0.
Let J0 := α0/γ(α0).

Theorem 5 (Existence of periodic solutions) The mean-field equa-
tion (1) admits a family of periodic solutions in the neighborhoods of ν∞α0

.
The family can be parametrized by J , for J close to J0. Their amplitudes
are small (null in the limit of J = J0) and their periods are close to
2πβ0.

Example. Consider b(x) = 2 − 2x and f(x) = x10. Then there
is an Hopf bifurcation at J0 ≈ 0.70, for which β0 ≈ 0.17.

A raster plot (each dot cor-
responds to a spike of a
neuron at a given time in
the network). Simulation
with N = 1000 neurons
and J = 1. Sponta-
neous (stable) oscillations
occurs.

Some key ideas of the proof. Let (at)t∈R be a T -periodic cur-
rent. We define the “asymptotic” (periodic) jump rate to be

∀t ∈ R, ρa(t) := lim
k∈N, k→∞

r
ν
a(t,−kT ).

It solves for all t

ρa(t) =

∫ t

−∞
Ka(t, s)ρa(s)ds, 1 =

∫ t

−∞
Ha(t, s)ρa(s)ds.

Probabilistic interpretation of ρa. Let (Y ν,at )t≥0 be the solution
of (2), driven by theT -periodic current a. Define (τi)i≥0 the times
of its successive jumps. Let:

φi := τi − b
τi
T c, τi+1 − τi =: ∆iT + φi+1 − φi.

Then, (φi)i≥1 is Markov with transition probability kernel
KT
a (·, s)

K
T
a (t, s) =

∑
k≥0

Ka(t, s− kT ).

Let φ̃a be the unique invariant measure of this Markov chain and
let ca := Eφi∼φ̃a ∆i. Then

∀t ∈ [0, T ], ρa(t) =
φ̃a(t)
ca

.

A difficulty. The period T itself is unknown. We define for all
β > 0 and a 2π-periodic:

ρ̃(β, a) := t 7→ ρd(βt) with d(t) = a(t/β).

To find periodic solutions of (1), it suffices to find roots of

Gα : C2π × R∗+ × R∗+ → C2π

(x, κ, α) 7→ (α+ x)− α
γ(α)

ρ̃(β, α+ x),

Perspectives. Give an efficient algorithm to compute the
stability of the invariant measures (based on Theorem 4).
Study the stability of the periodic solutions. Extend the
model to multi-populations (inhibitory and excitatory neu-
rons). Study some variants of the model with, for instance,
a Brownian motion in the dynamic.
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