A Mean-Field model of interacting neurons

UNIVERSITÉ

 CÔTE D'AZURQuentin Cormier - Etienne Tanré

1. THE MODEL

We model neurons in interactions. The model is known in the literature as the generalized integrate-and-fire (GIF) or as the Escape noise model

 oscillations.

We consider $N \geq 1$ neurons, characterized by their membrane
potential $\left(V_{t}^{i}\right)_{t \geq 0}, i \in 1, \ldots, N$.
Between the spikes, $\left(\boldsymbol{V}_{t}^{i}\right)_{t \geq 0}$ solves:

$$
d V_{t}=b\left(V_{t}\right) d t
$$

Neuron \boldsymbol{i} spike randomly at time \boldsymbol{t} with rate $f\left(\boldsymbol{V}_{\boldsymbol{t}}^{\boldsymbol{i}}\right)$. Then

1. The potential of neuron \boldsymbol{i} is reset to zero: $\boldsymbol{V}_{t}^{\boldsymbol{i}}=\mathbf{0}$
2. The other neurons $\boldsymbol{j} \neq \boldsymbol{i}$ receive a kick $V_{t}^{j}=V_{t-}^{j}+J_{i \rightarrow j}$

The parameters. (a) The drift term $b: \mathbb{R}_{+} \rightarrow \mathbb{R}$, it gives the sub-threshold dynamics. (b) The rate function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ $f(v) d t$ is the probability for a neuron with a potential v to spike between t and $t+d t$. (c) The connectivity matrix $\left(J_{i \rightarrow j}\right)_{i, j}$ (deterministic and constant in time). (d) The initial conditions of the neuron.

A0. For all $x \in \mathbb{R}_{+}, b(x)=b_{0}-\kappa x$ and $f(x)=\left(x_{+}\right)^{p}$, for some constants $b_{0}, \kappa \geq 0$ and $p \geq 1$.

2. THE MEAN-FIELD LIMIT

A1. Assume the initial conditions $V_{0}^{1}, \ldots V_{0}^{N}$ are i.i.d. with probability law $\nu \in \mathcal{M}\left(f^{2}\right)$, that is: $\int_{\mathbb{R}} f^{2}(x) \nu(d x)<\infty$. A2. Assume $J_{i \rightarrow j}=\frac{J}{N}$ for some constant $J \geq 0$.
As $N \rightarrow+\infty, \mathcal{L}\left(\left(V_{t}^{i}\right)_{t \geq 0}\right) \rightarrow_{N} \mathcal{L}\left(\left(V_{t}\right)_{t \geq 0}\right)$ where $\left(V_{t}\right)_{t \geq 0}$ solves the Mckean-Vlasov equation
(1) $\quad \frac{d}{d t} V_{t}=b\left(V_{t}\right)+J \mathbb{E} f\left(V_{t}\right) \quad$ and V_{t} jumps to 0 with rate $f\left(V_{t}\right)$.
$\hookrightarrow \mathbb{E} f\left(V_{t}\right)$ is the mean number of spikes per unit of time in the network.
Theorem 1 The mean-field SDE (1) has a path-wise unique solution $\left(V_{t}\right)_{t \geq 0}$. Moreover, it holds that $\sup _{t \geq 0} \mathbb{E} f\left(V_{t}\right)$

4. THE INVARIANT MEASURES

Theorem 3 The invariant probability measures of the mean-field SDE (1) are $\left\{\nu_{\alpha}^{\infty} \mid \alpha=J \gamma(\alpha), \alpha \geq 0\right\}$, with
$\nu_{\alpha}^{\infty}(x) d x:=\frac{\gamma(\alpha)}{\alpha+b(x)} \exp \left(-\int_{0}^{x} \frac{f(y)}{\alpha+b(y)} d y\right) \mathbb{1}_{x \in\left[0, \sigma_{\alpha}\right]} d x$
where σ_{α} is the limit of the deterministic flow of the ODE driven by $b(x)+\alpha$ and $\gamma(\alpha)$ is the normalizing factor. It holds that $\nu_{\alpha}^{\infty}(f)=$ $\gamma(\alpha)$.

Example: $f(x)=x^{3}, b(x)=0.28-x, J=2$: there are three
invariant measures ($\alpha_{1} \approx 0.01, \alpha_{2} \approx 0.34$ and $\alpha_{3} \approx 3.83$)

5. LOCAL STABILITY

What happens for larger weights J ?
Def. Equip $\mathcal{M}\left(f^{2}\right)$ with $d(\nu, \mu)=\int_{\mathbb{T}}[1+f(x)]|\nu-\mu|(d x)$. Let ν_{α}^{∞} be an invariant measure of (1). We say it is locally stable if there exists some $\epsilon>0$ and $C, \lambda>0$ such that:
with $\nu_{t}=\mathcal{L}\left(V_{t}\right)$. Our key tool to study the stability is to look at the zeros of

$$
\left.\Phi_{\alpha}: \quad \mathcal{M}\left(f^{2}\right) \times L_{(\nu, h)}^{\infty}\right) \xrightarrow[(\alpha+h)-J r_{\alpha+h}^{\nu}]{\stackrel{L}{\infty}}
$$

Here $L_{\lambda}^{\infty}=\left\{x: \mathbb{R}_{+} \rightarrow \mathbb{R} \mid\|x\|_{\lambda}^{\infty}<\infty\right\}$ with $\|x\|_{\lambda}^{\infty}=$ $\operatorname{esssup}_{t \geq 0}|x(t)| e^{\lambda t}$.

Proposition 2 The function Φ_{α} is continuous with respect to ν and C^{1} with respect to h. Moreover, there exists a function Θ_{α} such that $\forall 0<\lambda<\lambda_{\alpha}, \Theta_{\alpha} \in L_{\lambda}^{1}$ and
$\forall c \in L_{\lambda}^{\infty}, D_{h} \Phi\left(\nu_{\alpha}^{\infty}, 0\right) \cdot c=c-\Theta_{\alpha} * c$
The function Θ_{α} is known explicitly in term of f, b and α.
Let $\widehat{\Theta}_{\alpha}(z)$ the Laplace transform of Θ_{α}.
Theorem 4 Assume all the complex roots of $z \mapsto \Theta_{\alpha}(z)-1$ are located on the left half-plane. Then the invariant measure ν_{α}^{∞} is locally stable.

Examples for which Theorem 4 applies. For J small enough it is always satisfied. If $b \equiv 0$, it is satisfied (and the invariant measure is always locally stable, whatever the value of the weight J). When Theorem 4 does not apply, it means that spontaneous oscillations may exists!

References

```
De Masi, A.,Galves,
```

Fournier, N., Löcherbach, E., 2016. On a toy model of interacting neurons.
[3]
Cormier, Q., Tanré, E., Velz, R., 2019. Long time behavior of a mean

3. Volterra eouation

The difficulty: there is no closed formula for $t \mapsto \mathbb{E} f\left(V_{t}\right)$ The Ito formula gives

$$
\left.\frac{d}{d t} \mathbb{E} f\left(V_{t}\right)=\mathbb{E} f^{\prime}\left(V_{t}\right)\left[b\left(V_{t}\right)+J \mathbb{E} f\left(V_{t}\right)\right)\right]-\mathbb{E} f^{2}\left(V_{t}\right)
$$

In particular $\left.\frac{d}{d t} \mathbb{E} f\left(V_{t}\right)\right|_{t=0}$ depends on $\mathbb{E} f\left(V_{0}\right)$ but also on $\mathbb{E} f^{\prime}\left(V_{0}\right)$ and on $\mathbb{E} f^{2}\left(V_{0}\right)$.
The linearized process. Given an "external current" $\left(a_{t}\right)_{t>0} \in$ $\mathcal{C}\left(\mathbb{R}_{+}\right)$we define $Y_{t}^{\nu, a}$, starting at time s with law ν, solution of:
(2) $\frac{d}{d t} Y_{t, s}^{\nu, \boldsymbol{a}}=b\left(Y_{t, s}^{\nu, \boldsymbol{a}}\right)+a_{t}+\quad$ jumps to 0 at rate $f\left(Y_{t, s}^{\nu, \boldsymbol{a}}\right)$

The survival function and its density. Define
$\tau_{s}^{\nu, a}:=$ time of the first jump of $Y_{t, s}^{\nu, a}, \quad r_{a}^{\nu}(t, s)=\mathbb{E} f\left(Y_{t, s}^{\nu, a}\right)$
$H_{a}^{\nu}(t, s):=\mathbb{P}\left(\tau_{s}^{\nu, a}>t\right), \quad K_{a}^{\nu}(t, s):=-\frac{d}{d t} \mathbb{P}\left(\tau_{s}^{\nu, a}>t\right)$.

We have $r_{a}^{\nu}(t, s)=\lim _{\delta \downarrow 0} \frac{1}{\delta} \mathbb{P}$ (there is a jump in $[t, t+\delta]$).
Proposition $1 r_{a}^{\nu}(t, s)$ is the solution of the non-homogenous Volterra equation:

$$
r_{a}^{\nu}(t, s)=K_{a}^{\nu}(t, s)+\int_{s}^{t} K^{\delta_{0}}(t, u) r_{a}^{\nu}(u, s) d u
$$

$J \mathbb{E} f\left(V_{t}\right)$ is the unique solution of $a=J r_{a}^{\nu}$. When $\hookrightarrow a_{t}:=J r_{t}=J \mathbb{E} f\left(V_{t}\right)$ is the unique solution of $a=J r_{a}^{\nu}$. When
$a \equiv \alpha$ is constant, it reduces to a linear convolution Volterra equation. We used Laplace transform to study it. The asymptotic of $t \mapsto r_{\alpha}^{\nu}(t)$ is related to the location of the zeros of the Laplace transform of $t \mapsto H_{\alpha}^{\delta_{0}}(t)$.

Theorem 2 (See [3]) Given b and f, one can find a weight $J_{0}>0$ s.t. for all $J \in\left[0, J_{0}\right]$, the mean-filed $S D E$ has an unique invariant measure which is globally stable.

6. SPONTANEOUS OSCILLATIONS: HOPF BIFURCATION

A3. Assume there is some α_{0} s.t. $\Theta_{\alpha_{0}}$ has two (simple) complex roots i / β_{0} and $-i / \beta_{0}$. Assume moreover that the roots of $\widehat{\Theta}_{\alpha}$ crosses the imaginary axis with "non vanishing speed" at $\alpha=\alpha_{0}$ Let $J_{0}:=\alpha_{0} / \gamma\left(\alpha_{0}\right)$.
Theorem 5 (Existence of periodic solutions) The mean-field equa tion (1) admits a family of periodic solutions in the neighborhoods of $\nu_{\alpha_{0}}^{\infty}$ The family can be parametrized by J, for J close to J_{0}. Their amplitudes are small (null in the limit of $J=J_{0}$) and their periods are close to $2 \pi \beta_{0}$.

Example. Consider $b(x)=2-2 x$ and $f(x)=x^{10}$. Then there is an Hopf bifurcation at $J_{0} \approx 0.70$, for which $\beta_{0} \approx 0.17$.

A raster plot (each dot cor A raster plot (each dot cor responds to a spike of a neuron at a given time in the network). Simulation with $N=1000$ neuron
and $J=1 . ~ S p o n t a-$ neous (stable) oscillations neous (stable) oscillations

Some key ideas of the proof. Let ${ }^{5}\left(a_{t}\right)_{t \in \mathbb{R}}$ be a T-periodic cur rent. We define the "asymptotic" (periodic) jump rate to be

$$
\forall t \in \mathbb{R}, \rho_{a}(t):=\lim _{k \in \mathbb{N}, k \rightarrow \infty} r_{a}^{\nu}(t,-k T)
$$

It solves for all t

$\rho_{a}(t)=\int_{-\infty}^{t} K_{a}(t, s) \rho_{a}(s) d s, \quad 1=\int_{-\infty}^{t} H_{a}(t, s) \rho_{a}(s) d s$

Probabilistic interpretation of ρ_{a}. Let $\left(Y_{t}^{\nu, a}\right)_{t>0}$ be the solution of (2), driven by the T-periodic current a. Define $\left(\tau_{i}\right)_{i \geq 0}$ the times of its successive jumps. Let:

$$
\phi_{i}:=\tau_{i}-\left\lfloor\frac{\tau_{i}}{T}\right\rfloor, \quad \tau_{i+1}-\tau_{i}=: \Delta_{i} T+\phi_{i+1}-\phi_{i}
$$

Then, $\left(\phi_{i}\right)_{i \geq 1}$ is Markov with transition probability kernel $K_{a}^{T}(\cdot, s)$

$$
K_{a}^{T}(t, s)=\sum_{k \geq 0} K_{a}(t, s-k T)
$$

Let $\tilde{\phi}_{a}$ be the unique invariant measure of this Markov chain and let $c_{a}:=\mathbb{E}_{\phi_{i} \sim \tilde{\phi}_{a}} \Delta_{i}$. Then

$$
\forall t \in[0, T], \rho_{a}(t)=\frac{\tilde{\phi}_{a}(t)}{c_{a}}
$$

A difficulty. The period T itself is unknown. We define for all $\beta>0$ and $a 2 \pi$-periodic:

$$
\tilde{\rho}(\beta, a):=t \mapsto \rho_{d}(\beta t) \quad \text { with } \quad d(t)=a(t / \beta)
$$

To find periodic solutions of (1), it suffices to find roots of
$G_{\alpha}: C_{2 \pi} \times \mathbb{R}_{+}^{*} \times \mathbb{R}_{+}^{*} \quad \rightarrow \quad C_{2 \pi}$
$(x, \kappa, \alpha) \quad \mapsto \quad(\alpha+x)-\frac{\alpha}{\gamma(\alpha)} \tilde{\rho}(\beta, \alpha+x)$

Perspectives. Give an efficient algorithm to compute the

 stability of the invariant measures (based on Theorem 4) Study the stability of the periodic solutions. Extend the model to multi-populations (inhibitory and excitatory neurons). Study some variants of the model with, for instance, a Brownian motion in the dynamic.