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We model neurons in interactions. The model is known in the literature as the generalized integrate-and-fire (GIF) or as the Escape noise model.
Key results. In the Mean-Field (M-F) limit - where the number of neurons goes to infinity - we study the long time behavior of the network. We show that, depending on the average interaction strength,
either the system can stabilize to a steady states or oscillate indefinitely. We develop specific mathematical tools to classify the stability of the invariant measures and predict the emergence of spontaneous

oscillations.

We consider N > 1 neurons, characterized by their membrane

potential (V;*)¢>0, ¢ € 1,.., N.
Between the spikes, (Vt"")tzo solves:
dVy = b(Vz)dt

Neuron 4 spike randomly at time ¢ with rate £(V,*). Then

1. The potential of neuron 4 is reset to zero: V,* = 0

2. The other neurons 3 # % receive a kick:

VP =V +Jis;

2. THE MEAN-FIELD LIMIT
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The parameters. (a) The drift term b : Ry — R, it gives the
sub-threshold dynamics. (b) The rate function f : Ry — Ry:
f (v)dt is the probability for a neuron with a potential v to spike
between t and t + dt. (c) The connectivity matrix (J;— ;) ;

(deterministic and constant in time). (d) The initial conditions
of the neuron.
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AO. Forallz € Ry, b(x) = bg — kx and f(x) = (x4 )P, for
some constants bg, x > Oand p > 1.

A1l. Assume the initial conditions Vol, .
A2. Assume J;_,; = 4 for some constant J > 0.

Let v(t, -) be the law of V; attime ¢t > 0. It solves (weakly) the Fokker-Planck PDE:

VY arei.i.d. with probability law v € M (f?), that is: I 2 (z)v(dz) < oco.

As N — 400, L(V)i>0) =N L((Vi)i>0) where (V;);>0 solves the Mckean-Vlasov equation

d
(1) Evt = b(Vy) + JE f(V3)

and V; jumps to O with rate f(V%).

— E f(V:) is the mean number of spikes per unit of time in the network.

O o,
o V(@) = === [(b(z) + Jr)v(t, @)

o f(a?)l/(t, 33),
v(0,:) =v, r= /OOO f(x)v(t, x)dx,

— 1y = E f(V4); it is the key quantity to study to understand the model.

Theorem 1 The mean-field SDE (1) has a path-wise unique solution (Vi) >o. Moreover, it holds that sup,~q E f(V;) < oo.

4. THE INVARIANT MEASURES

Theorem 3 The invariant probability measures of the mean-field SDE
(Dare{v” |a = Jy(a), o > 0}, with

o _ ) [ _fW) N
T = e (= ) i) et

where o, 1s the limit of the deterministic flow of the ODE driven by
b(x) + o and v(«) is the normalizing factor. It holds that v~ (f) =

v(@).

25F

20F

15

10

P )

000 023 050 0F3  1.00 0.00 023 050 073 1.00 .D 1 2 3

Example: f(z) = z3, b(z) = 0.28 — z, J = 2: there are three
invariant measures (a7 ~ 0.01, s ~ 0.34 and a3 ~ 3.83)

5. LOCAL STABILITY

What happens for larger weights J?

Def. Equip M (f?) withd(v, u) = [, [1 + f(x)]|v — p|(dz).
Let v_.° be an invariant measure of (1). We say it is locally stable
if there exists some € > 0 and C, A > 0 such that:

Vv € M(f?), d(v,vy) < e = d(v,vy) < Ce™ Y,

with vy = L(V3:). Our key tool to study the stability is to look at
the zeros of

D, : ./\/l(f)XLOO
(v, h) =

— LS
(O{ =+ h) o Jra—l—h

Here LY = {z : Ry — R | ||z||3
esssup, - o |z(t)|e™*

< oo} with ||z]| =

Proposition 2 The function ®, is continuous with respect to v and

C* with respect to h. Moreover, there exists a function © , such that
VO < A < Ao, On € L) and

Ve € LY, Dp®(v. ,0)-c=c— O4 *c.

The function © , is known explicitly in term of f, b and c.

Let O, (2) the Laplace transform of ©

Theorem 4 Assume all the complex roots of z Ou(z) — 1 are
located on the left half-plane. Then the invariant measure v_~ is locally
stable.

Examples for which Theorem 4 applies. For J small enough it is
always satisfied. If b = 0, it is satistied (and the invariant mea-
sure is always locally stable, whatever the value of the weight J).
When Theorem 4 does not apply, it means that spontaneous oscil-
lations may exists!
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3. VOLTERRA EQUATION

The difficulty: there is no closed formula for t — E f(V%).
The Ito formula gives

LR F(V) = Ef (Vi) (Vi) + JE F(Vi))] — E f2 (Vo).

dt

In particular % E f(V;)|t=0 depends on E f(V,) but also on
E f'(Vp)and on E £2(Vp).

The linearized process. Given an “external current” (a:):>0 €
C(R4) we define Y, %, starting at time s with law v, solution of:

d
(2) EY;‘;G =b(Y, ;") +a: + jumpstoOatrate f(Y, )

The survival function and its density. Define

T, " := time of the firstjump of Y7\, r_(t,s) =E f(Y; ")
d
HY(t,5) = B > ), KL(ts) 1= — < B(r® > 1),
K, (t,s)
start with v at s P [u, u+du] P (1, t+di]
rq(u,s) K0 (t,u)

6. SPONTANEOUS OSCILLATIONS:

AN

A3. Assume there is some o s.t. Oa

roots i /8o and —i/Bg. Assume moreover that the roots of O
crosses the imaginary axis with “non vanishing speed” at o = ap.

Let Jo = (XQ/’)/(OA()).

has two (simple) complex

Theorem 5 (Existence of periodic solutions) The mean-field equa-
tion (1) admits a family of periodic solutions in the neighborhoods of v 5,

The family can be parametrized by J, for J close to Jo. Their amplitudes
are small (null in the limit of J = Jo) and their periods are close to

27‘(‘50.

Example Consider b(z) = 2 — 2z and f(x) = z'". Then there
is an Hopf b1furcat10n at JO ~ O 70, for which 8o ~ 0.17.

A raster plot (each dot cor-
responds to a spike of a
neuron at a given time in

the network). Simulation
with N = 1000 neurons

and J = 1. Sponta-
neous (stable) oscillations
occurs.

Some kegr ideas of the proomf. Letﬁ(at)th be a T'-periodic cur-
rent. We define the “asymptotic” (periodic) jump rate to be

Vt € R, po(t) := lim

“(t, —kT).
kEN, k—>oora'( ’ )

It solves for all ¢

pa(t):/_t Ko (L, 8)pa(s)ds, 1:/_t Ho (L, $)pa (s)ds.

We have ¥ (t, s) = lims o 3 P(thereis ajump in [¢, t + 6]).

Proposition1 r (t, s) is the solution of the non-homogenous Volterra
equation:

t
r(t,s) = K. (t,s) + / K°0 (¢, u)r, (u, s)du.

— a¢ = Jry = JE f(Vy) is the unique solution of a = Jr_. When
a = « is constant, it reduces to a linear convolution Volterra equation. We
used Laplace transform to study it. The asymptotic of ¢ +— 7 (t) is related

to the location of the zeros of the Laplace transform of t — H iO (t).

Theorem 2 (See [3]) Given b and f, one can find a weight Jo > O
s.t. forall J € |0, Jo|, the mean-filed SDE has an unique invariant
measure which is globally stable.
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Example: initial measure v = §¢9.5, J = 1.0, © = 0.1: evolution of
the law of V; as t goes to infinity.

HOPF BIFURCATION

Probabilistic interpretation of p,. Let (Y,”'®):>( be the solution
of (2), driven by the T'-periodic current a. Define (7; ) ;>0 the times
of its successive jumps. Let:

Gi =Ty — |71, — 7 = AT + pip1 — i

Then, (¢;);>1 is Markov with transition probability kernel
K Z ('7 S )

Ti+1

K, (t,s) =Y Kau(t,s —kT).

k>0
Let ¢, be the unique invariant measure of this Markov chain and

letc, := E%N&a A ;. Then

Vt € [0,T], pa(t) = 2alt),

A difficulty. The period T itself is unknown. We define for all
B > 0 and a 27-periodic:

p(B;a) =1t — pa(Bt)

To find periodic solutions of (1), it suffices to find roots of

GQZCQW XR: XRj_
(x,k, ) >

with  d(t) = a(t/B).

— 0271-
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p(B, a+ ),
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Perspectives. Give an efficient algorithm to compute the
stability of the invariant measures (based on Theorem 4).
Study the stability of the periodic solutions. Extend the
model to multi-populations (inhibitory and excitatory neu-
rons). Study some variants of the model with, for instance,
a Brownian motion in the dynamic.




