A Mean-Field model of interacting neurons Quentin Cormier - Etienne Tanré - Romain Veltz

INRIA - QUENTIN.CORMIER@INRIA.FR

1. THE MODEL

We model neurons in interactions. The model is known in the literature as the generalized integrate-and-fire (GIF) or as the Escape noise model. Key results. In the Mean-Field (M-F) limit - where the number of neurons goes to infinity - we study the long time behavior of the network. We show that, depending on the average interaction strength, either the system can stabilize to a steady states or oscillate indefinitely. We develop specific mathematical tools to classify the stability of the invariant measures and predict the emergence of spontaneous oscillations.

We consider $N \ge 1$ neurons, characterized by their membrane

potential $(V_t^i)_{t>0}, i \in 1, ..., N$. Between the spikes, $(V_t^i)_{t>0}$ solves:

 $dV_t = b(V_t)dt$

Neuron *i* spike randomly at time *t* with rate $f(V_t^i)$. Then

- 1. The potential of neuron *i* is reset to zero: $V_t^i = 0$
- 2. The other neurons $j \neq i$ receive a kick: $V_t^j = V_{t-}^j + J_{i \to j}$

The parameters. (a) The drift term $b : \mathbb{R}_+ \to \mathbb{R}$, it gives the sub-threshold dynamics. (b) The rate function $f : \mathbb{R}_+ \to \mathbb{R}_+$: f(v)dt is the probability for a neuron with a potential v to spike between t and t + dt. (c) The connectivity matrix $(J_{i \rightarrow j})_{i,j}$ (deterministic and constant in time). (d) The initial conditions of the neuron.

A0. For all $x \in \mathbb{R}_+$, $b(x) = b_0 - \kappa x$ and $f(x) = (x_+)^p$, for some constants $b_0, \kappa \ge 0$ and $p \ge 1$.

2. THE MEAN-FIELD LIMIT

A1. Assume the initial conditions $V_0^1, \ldots V_0^N$ are i.i.d. with probability law $\nu \in \mathcal{M}(f^2)$, that is: $\int_{\mathbb{R}} f^2(x)\nu(dx) < \infty$. A2. Assume $J_{i \to j} = \frac{J}{N}$ for some constant $J \ge 0$. As $N \to +\infty$, $\mathcal{L}((V_t^i)_{t\geq 0}) \to_N \mathcal{L}((V_t)_{t\geq 0})$ where $(V_t)_{t\geq 0}$ solves the **Mckean-Vlasov** equation

(1)
$$\frac{d}{dt}V_t = b(V_t) + J\mathbb{E}f(V_t) \text{ and } V_t \text{ jumps to 0 with rate } f(V_t).$$

 $\hookrightarrow \mathbb{E} f(V_t)$ is the mean number of spikes per unit of time in the network.

Theorem 1 The mean-field SDE (1) has a path-wise unique solution $(V_t)_{t>0}$. Moreover, it holds that $\sup_{t>0} \mathbb{E} f(V_t) < \infty$.

Let $\nu(t, \cdot)$ be the law of V_t at time $t \ge 0$. It solves (weakly) the **Fokker-Planck PDE**:

$$\begin{cases} \frac{\partial}{\partial t}\nu(t,x) = -\frac{\partial}{\partial x}[(b(x) + Jr_t)\nu(t,x)] - f(x)\nu(t,x) \\ \nu(0,\cdot) = \nu, \quad r_t = \int_0^\infty f(x)\nu(t,x)dx, \\ \nu(t,0) = \frac{r_t}{b(0) + Jr_t}. \end{cases}$$

 $\hookrightarrow r_t = \mathbb{E} f(V_t)$; it is the key quantity to study to understand the model.

4. THE INVARIANT MEASURES

Theorem 3 The invariant probability measures of the mean-field SDE (1) are $\{\nu_{\alpha}^{\infty} \mid \alpha = J\gamma(\alpha), \ \alpha \ge 0\}$, with

$$\nu_{\alpha}^{\infty}(x)dx := \frac{\gamma(\alpha)}{\alpha + b(x)} \exp\left(-\int_{0}^{x} \frac{f(y)}{\alpha + b(y)}dy\right) \mathbb{1}_{x \in [0, \sigma_{\alpha}]} dx$$

where σ_{α} is the limit of the deterministic flow of the ODE driven by $b(x) + \alpha$ and $\gamma(\alpha)$ is the normalizing factor. It holds that $\nu_{\alpha}^{\infty}(f) = 0$ $\gamma(\alpha).$

3. VOLTERRA EQUATION

The difficulty: there is no closed formula for $t \mapsto \mathbb{E} f(V_t)$. The Ito formula gives

 $\frac{d}{dt} \mathbb{E} f(V_t) = \mathbb{E} f'(V_t) \left[b(V_t) + J \mathbb{E} f(V_t) \right] - \mathbb{E} f^2(V_t).$

In particular $\frac{d}{dt} \mathbb{E} f(V_t)|_{t=0}$ depends on $\mathbb{E} f(V_0)$ but also on $\mathbb{E} f'(V_0)$ and on $\mathbb{E} f^2(V_0)$. The linearized process. Given an "external current" $(a_t)_{t>0} \in$ $\mathcal{C}(\mathbb{R}_+)$ we define $Y_t^{\nu, a}$, starting at time *s* with law ν , solution of:

We have $r_a^{\nu}(t,s) = \lim_{\delta \downarrow 0} \frac{1}{\delta} \mathbb{P}(\text{there is a jump in } [t,t+\delta]).$

Proposition 1 $r_a^{\nu}(t,s)$ is the solution of the non-homogenous Volterra *equation:*

$$r_{a}^{\nu}(t,s) = K_{a}^{\nu}(t,s) + \int_{s}^{t} K^{\delta_{0}}(t,u) r_{a}^{\nu}(u,s) du.$$

 $\hookrightarrow a_t := Jr_t = J\mathbb{E}f(V_t)$ is the unique solution of $a = Jr_a^{\nu}$. When $a \equiv \alpha$ is constant, it reduces to a **linear convolution Volterra equation**. We

Example: $f(x) = x^3$, b(x) = 0.28 - x, J = 2: there are three invariant measures ($\alpha_1 \approx 0.01, \alpha_2 \approx 0.34$ and $\alpha_3 \approx 3.83$)

5. LOCAL STABILITY

What happens for larger weights *J*?

 $- \alpha = 0.01$

Def. Equip $\mathcal{M}(f^2)$ with $d(\nu, \mu) = \int_{\mathbb{R}} [1 + f(x)] |\nu - \mu| (dx)$. Let ν_{α}^{∞} be an invariant measure of (1). We say it is **locally stable** if there exists some $\epsilon > 0$ and $C, \lambda > 0$ such that:

 $\forall \nu \in \mathcal{M}(f^2), \ d(\nu, \nu_{\alpha}^{\infty}) < \epsilon \implies d(\nu_t, \nu_{\alpha}^{\infty}) \le C e^{-\lambda t},$

with $\nu_t = \mathcal{L}(V_t)$. Our key tool to study the stability is to look at the zeros of

$$\begin{split} \Phi_{\alpha} : & \mathcal{M}(f^{2}) \times L_{\lambda}^{\infty} \to L_{\lambda}^{\infty} \\ & (\nu, h) \mapsto (\alpha + h) - Jr_{\alpha + h}^{\nu} \end{split}$$

Here $L_{\lambda}^{\infty} = \{x : \mathbb{R}_{+} \to \mathbb{R} \mid ||x||_{\lambda}^{\infty} < \infty\}$ with $||x||_{\lambda}^{\infty} = essup_{t \geq 0} |x(t)| e^{\lambda t}. \end{split}$

Proposition 2 The function Φ_{α} is continuous with respect to ν and C^1 with respect to h. Moreover, there exists a function Θ_{α} such that $\forall 0 < \lambda < \lambda_{\alpha}, \ \Theta_{\alpha} \in L^{1}_{\lambda} \ and$

(2) $\frac{d}{dt}Y_{t,s}^{\nu,\boldsymbol{a}} = b(Y_{t,s}^{\nu,\boldsymbol{a}}) + \boldsymbol{a_t} + \text{jumps to 0 at rate } f(Y_{t,s}^{\nu,\boldsymbol{a}})$ The survival function and its density. Define $\tau_s^{\nu,a} := \text{time of the first jump of } Y_{t,s}^{\nu,a}, \quad r_a^{\nu}(t,s) = \mathbb{E} f(Y_{t,s}^{\nu,a})$ $H_{a}^{\nu}(t,s) := \mathbb{P}(\tau_{s}^{\nu,a} > t), \quad K_{a}^{\nu}(t,s) := -\frac{d}{dt} \mathbb{P}(\tau_{s}^{\nu,a} > t).$

used **Laplace transform** to study it. The asymptotic of $t \mapsto r_{\alpha}^{\nu}(t)$ is related to the location of the zeros of the Laplace transform of $t \mapsto H_{\alpha}^{\delta_0}(t)$.

Theorem 2 (See [3]) Given b and f, one can find a weight $J_0 > 0$ s.t. for all $J \in [0, J_0]$, the mean-filed SDE has an unique invariant *measure which is globally stable.*

6. SPONTANEOUS OSCILLATIONS: HOPF BIFURCATION

A raster plot (each dot cor-

responds to a spike of a

neuron at a given time in

the network). Simulation

with N = 1000 neurons

and J = 1. Sponta-

occurs.

A3. Assume there is some α_0 s.t. $\widehat{\Theta}_{\alpha_0}$ has two (simple) complex roots i/β_0 and $-i/\beta_0$. Assume moreover that the roots of $\widehat{\Theta}_{\alpha}$ crosses the imaginary axis with "non vanishing speed" at $\alpha = \alpha_0$.

Theorem 5 (Existence of periodic solutions) The mean-field equation (1) admits a family of periodic solutions in the neighborhoods of $\nu_{\alpha 0}^{\infty}$. *The family can be parametrized by J*, for J close to J_0 . Their amplitudes are small (null in the limit of $J = J_0$) and their periods are close to $2\pi\beta_0$.

Probabilistic interpretation of ρ_a . Let $(Y_t^{\nu,a})_{t>0}$ be the solution of (2), driven by the *T*-periodic current *a*. Define $(\tau_i)_{i>0}$ the times of its successive jumps. Let:

$$\phi_i := \tau_i - \lfloor \frac{\tau_i}{T} \rfloor, \quad \tau_{i+1} - \tau_i =: \Delta_i T + \phi_{i+1} - \phi_i.$$

Then, $(\phi_i)_{i>1}$ is Markov with transition probability kernel $K_a^T(\cdot,s)$

$$K_{a}^{T}(t,s) = \sum_{k \ge 0} K_{a}(t,s-kT).$$

 $\forall c \in L^{\infty}_{\lambda}, \ D_h \Phi(\nu^{\infty}_{\alpha}, 0) \cdot c = c - \Theta_{\alpha} * c.$

The function Θ_{α} *is known explicitly in term of* f*, b and* α *.*

Let $\widehat{\Theta}_{\alpha}(z)$ the Laplace transform of Θ_{α} . **Theorem 4** Assume all the complex roots of $z \mapsto \widehat{\Theta}_{\alpha}(z) - 1$ are located on the left half-plane. Then the invariant measure ν_{α}^{∞} is locally stable.

Examples for which Theorem 4 applies. For *J* small enough it is always satisfied. If $b \equiv 0$, it is satisfied (and the invariant measure is always locally stable, whatever the value of the weight J). When Theorem 4 **does not** apply, it means that spontaneous oscillations may exists!

REFERENCES

- De Masi, A., Galves, A., Löcherbach, E., Presutti, E., 2015. Hydrodynamic Limit for [1] Interacting Neurons.
- Fournier, N., Löcherbach, E., 2016. On a toy model of interacting neurons. [2]
- Cormier, Q., Tanré, E., Veltz, R., 2019. Long time behavior of a mean-field model of [3] interacting neurons.

Example. Consider b(x) = 2 - 2x and $f(x) = x^{10}$. Then there is an Hopf bifurcation at $J_0 \approx 0.70$, for which $\beta_0 \approx 0.17$.

Let $J_0 := \alpha_0 / \gamma(\alpha_0)$.

Some key ideas of the proof. Let $(a_t)_{t \in \mathbb{R}}$ be a *T*-periodic current. We define the "asymptotic" (periodic) jump rate to be

$$\forall t \in \mathbb{R}, \ \rho_a(t) := \lim_{k \in \mathbb{N}, \ k \to \infty} r_a^{\nu}(t, -kT).$$

It solves for all t

$$\rho_a(t) = \int_{-\infty}^t K_a(t,s)\rho_a(s)ds, \quad 1 = \int_{-\infty}^t H_a(t,s)\rho_a(s)ds.$$

Let $\tilde{\phi}_a$ be the unique invariant measure of this Markov chain and let $c_a := \mathbb{E}_{\phi_i \sim \tilde{\phi}_a} \Delta_i$. Then

$$\forall t \in [0, T], \ \rho_a(t) = \frac{\tilde{\phi}_a(t)}{c_a}.$$

A difficulty. The period T itself is unknown. We define for all $\beta > 0$ and $a 2\pi$ -periodic:

 $\tilde{\rho}(\beta, a) := t \mapsto \rho_d(\beta t)$ with $d(t) = a(t/\beta)$.

neous (stable) oscillations To find periodic solutions of (1), it suffices to find roots of

 $\begin{array}{cccc} G_{\alpha}: C_{2\pi} \times \mathbb{R}^{*}_{+} \times \mathbb{R}^{*}_{+} & \rightarrow & C_{2\pi} \\ (x, \kappa, \alpha) & \mapsto & (\alpha + x) - \frac{\alpha}{\gamma(\alpha)} \tilde{\rho}(\beta, \alpha + x), \end{array}$

Perspectives. Give an efficient algorithm to compute the stability of the invariant measures (based on Theorem 4). Study the stability of the periodic solutions. Extend the model to multi-populations (inhibitory and excitatory neurons). Study some variants of the model with, for instance, a Brownian motion in the dynamic.