Kolmogorov Equation on Wasserstein space and McKean Vlasov processes

P.-E. Chaudru de Raynal LAMA & IRMAR

From joint works with N. Frikha $${\tt LPSM}$$

Workshop Non linear processes Saint-Etienne 2-5 juillet 2019

McKean-Vlasov SDE

On [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

→ Dynamic feels current state in physical space as well as its statistical distribution

→ Sometimes called "distribution dependent" / "non-linear" / "mean-field" - SDE

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

- → Dynamic feels current state in physical space as well as its statistical distribution
- → Sometimes called "distribution dependent" / "non-linear" / "mean-field" SDE
 - Law given as the solution of non-linear Fokker-Planck equation (distributional sense)

$$\partial_t \mu_t + \operatorname{div}(\mu_t b(t,\cdot,\mu_t)) + [1/2] \frac{D^2(\mu_t \sigma \sigma^*(t,\cdot,\mu_t))}{D^2(\mu_t \sigma \sigma^*(t,\cdot,\mu_t))} = 0, \quad \mu_0 = [X_0]$$

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

- → Dynamic feels current state in physical space as well as its statistical distribution
- → Sometimes called "distribution dependent" / "non-linear" / "mean-field" SDE
 - Law given as the solution of non-linear Fokker-Planck equation (distributional sense)

$$\partial_t \mu_t + \operatorname{div}(\mu_t b(t,\cdot,\mu_t)) + [1/2] \frac{D^2(\mu_t \sigma \sigma^*(t,\cdot,\mu_t))}{D^2(\mu_t \sigma \sigma^*(t,\cdot,\mu_t))} = 0, \quad \mu_0 = [X_0]$$

• Gives the asymptotic $(N \to +\infty)$ dynamic of one particle interacting in mean field

$$\left\{ \begin{aligned} &X_t^i = X_0 + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \\ &\mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i}, \quad X_0^i \sim X_0 \end{aligned} \right.$$

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

- → Dynamic feels current state in physical space as well as its statistical distribution
- → Sometimes called "distribution dependent" / "non-linear" / "mean-field" SDE
 - Law given as the solution of non-linear Fokker-Planck equation (distributional sense)

$$\partial_t \mu_t + \operatorname{div}(\mu_t b(t,\cdot,\mu_t)) + [1/2] \frac{D^2 \left(\mu_t \sigma \sigma^*(t,\cdot,\mu_t)\right)}{(\mu_t \sigma \sigma^*(t,\cdot,\mu_t))} = 0, \quad \mu_0 = [X_0]$$

• Gives the asymptotic $(N \to +\infty)$ dynamic of one particle interacting in mean field

$$\begin{cases} & X_t^i = X_0 + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \\ & \mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i}, \quad X_0^i \sim X_0 \end{cases}$$

 \rightarrow Popular for (e.g.) applications/connection in/with MFG, ANN

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

- Cauchy-Lipschitz theory :
 - Sensitive : two unknowns (position/distribution)
- Need to suitable choice of space and metric :

$$\downarrow$$
 space is $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$

 \downarrow metric is $(|\cdot - \circ|, \mathcal{W}_2(\cdot, \circ))$

$$\begin{split} \mathcal{P}_p(\mathbb{R}^d) &= \left\{ \mu \in \mathcal{P}(\mathbb{R}^d), \ s.t. \ \int |\cdot|^p d\mu < \infty \right\}, \quad p \geqslant 1 \\ \mathcal{W}_p(\mu, \mu') &= \inf_{\pi, \text{ coupling of } \mu, \mu'} \left\{ \int |x - y|^p d\pi(x, y) \right\} \quad p \geqslant 1 \\ &\leqslant \quad \mathbb{E}[|X - X'|^p], \ X \sim \mu, \ X' \sim \mu' \end{split}$$

• W.P. (\exists ! path and law) for Lipschitz coefficients on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$

MKV-SDE: ill vs well - posedness

- Beyond Cauchy-Lipschitz theory \(\simes \) hard!
 - \downarrow Analogy with classical setting (Stroock&Varadhan M.P.'s theory / Zvonkin's theory)
- (i) C.E. 1 (Sheutzow)

$$\downarrow$$
 $X_t = X_0 + \int_0^t \mathbb{E}[b(X_s)]ds$, b locally Lipschitz (even bounded!) \leadsto may be ill-posed

- $\mathrel{\lower.5ex}$ "relies on summation of local-Lipschitz constant over $\operatorname{supp}\{\mu\}$ "
- (ii) E. (Shiga and Tanaka) → extensions (Jourdain Mishura&Veretennikov Lacker Röckner & Zhang)

- \downarrow \rightsquigarrow (drift continuous +bounded & Lip TV +diffusion linear & > 0)
- → Noise may help?
- (iii) C.E. 2 (Delarue)

$$\downarrow X_t = X_0 + \int_0^t b(\mathbb{E}[X_s)] ds + B_t$$
, b bounded (even Hölder!)

may have several solutions!

- \rightarrow relies on ill posedness of $\dot{x}_t = \mathbf{b}(x_t)$
- Finite dimensional noise to smooth infinite dimensional variable www tricky smoothing properties www need to investigate associated PDE

- $W_1(\mu, \nu) = \sup \left\{ \left| \int h d\mu \int h d\nu \right|, \quad \|h\|_{\mathrm{Lip}} \leqslant 1 \right\}$ (Kantorovitch)
- $\bullet \ \, \mathrm{TV}(\mu,\nu) = \frac{1}{2} \sup \left\{ \left| \int h d\mu \int h d\nu \right|, \quad \|h\|_{\infty} \leqslant 1 \right\} = \frac{1}{2} \|p^{\mu} p^{\nu}\|_{L_1}$

$$\mu,\nu\in\mathcal{P}_2(\mathcal{K}),\quad W_1(\mu,\nu)\leqslant \mathrm{diam}(\mathcal{K})\mathrm{TV}(\mu,\nu)$$

 $\mathrel{\ \, \sqsubseteq \ \, }$ For coefficients $c(\mu)=\int \varphi d\mu \leadsto$ no need of regularity on φ to be Lipschitz in TV.

MKV-SDE: ill vs well - posedness

- Beyond Cauchy-Lipschitz theory \(\simes \) hard!
 - \downarrow Analogy with classical setting (Stroock&Varadhan M.P.'s theory / Zvonkin's theory)
- (i) C.E. 1 (Sheutzow)

$$\downarrow$$
 $X_t = X_0 + \int_0^t \mathbb{E}[b(X_s)]ds$, b locally Lipschitz (even bounded!) \leadsto may be ill-posed

- $\mathrel{\lower.5ex}$ "relies on summation of local-Lipschitz constant over $\operatorname{supp}\{\mu\}$ "
- (ii) E. (Shiga and Tanaka) → extensions (Jourdain Mishura&Veretennikov Lacker Röckner & Zhang)

- \downarrow \rightsquigarrow (drift continuous +bounded & Lip TV +diffusion linear & > 0)
- → Noise may help?
- (iii) C.E. 2 (Delarue)

$$\downarrow X_t = X_0 + \int_0^t b(\mathbb{E}[X_s)] ds + B_t$$
, b bounded (even Hölder!)

may have several solutions!

- \rightarrow relies on ill posedness of $\dot{x}_t = \mathbf{b}(x_t)$
- Finite dimensional noise to smooth infinite dimensional variable www tricky smoothing properties www need to investigate associated PDE

MKV & Mean Field SDE- Chaos propagation

Recall that on [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M. gives asymptotic $(N \to +\infty)$ dynamic of one particle interacting in mean field

$$X_t^i = X_0^i + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \ \mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i} dB_s^i,$$

• Coefficients Lipschitz on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \leadsto$ propagation of chaos at the level of path (Sznitman) :

$$\bar{X}^i = \mathsf{MKV-SDE}(X^i_0, B^i), \quad \mathbb{E}[\sup_{t \leqslant T} |\bar{X}^i_t - X^i_t|^2] \leqslant \mathit{N}^{-1}$$

• Coefficients Lipschitz on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \leadsto$ propagation of chaos at the level of semigroup (Carmona-Delarue) :

$$\forall \text{ smooth } \phi \quad \mathbb{E}[\sup_{t\leqslant T} |\phi(\mu_t^N) - \phi(\mu_t)|] \leqslant \textit{N}^{-1/(d\vee 2)} \quad \text{(up to log for } d=2\text{)}$$

• Coefficients continuous, bounded on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ + Lipschitz in TV + $\sigma > 0$ & "linear" \rightarrow propagation of chaos in TV between k-uplet - no rate - (Lacker)

 \leadsto Noise restores propagation of chaos? \leadsto Need to investigate smoothing properties

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

- Search for generator \mathscr{L}
 - \hookrightarrow Solution (X, μ) is Markov on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$
 - \hookrightarrow Exists measurable map $u:[0,T]\times\mathbb{R}^d\times\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$ s.t.

$$\forall \varphi$$
 "smooth enough" $\forall t \in [0, T], \quad \mathbb{E}[\varphi(X_T, \mu_T) | (X_t, \mu_t)] = u(t, X_t, \mu_t).$

- Dynamic of u?
- generator should be PDE operator on $\mathbb{R}^d imes \mathcal{P}_2(\mathbb{R}^d)$
 - $\mathrel{\ \hookrightarrow \ }$ Derivative of map along flow of measure?
 - \downarrow Itô's formula on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$?

Let $h: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$

(i) Work first on space of signed measure : flat or linear functional derivative $\frac{\delta}{\delta m}h$ $\rightarrow \exists$ continuous function $[\delta h/\delta m]: \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \rightarrow \mathbb{R}$ s.t.

$$\lim_{\varepsilon \downarrow 0} \frac{h\big((1-\varepsilon)m + \varepsilon m'\big) - h(m)}{\varepsilon} = \int \frac{\delta h}{\delta m}(m)(y)d(m' - m)(y)$$

 \hookrightarrow defined up to additive constant \leadsto choose $\int [\delta h/\delta m](m)(y)dm)(y)=0$

(ii) Work with lift $\tilde{h}: L_2 \to \mathbb{R}$ of h: Lions' derivative $\partial_{\mu}h$ \downarrow Hilbert structure of $L_2 \leadsto$ Fréchet derivative $D\tilde{h}(X) =: \partial_{\mu}h(\mu)(X)$, law $(X) = \mu$ \downarrow 3 continuous function $\partial_{\mu}h: \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ s.t.

$$\phi \in L_2(\mu), \quad \lim_{\varepsilon \downarrow 0} \frac{h(\mu \circ (\mathrm{Id} + \varepsilon \phi)) - h(\mu)}{\varepsilon} = \int \partial_{\mu} h(\mu)(y) \cdot \phi(y) d\mu(y)$$

• Example : φ smooth. $h: \mu \mapsto \int \varphi d\mu \leadsto \frac{\delta h}{\delta m} = \varphi, \quad \partial_{\mu} h = \nabla \varphi$

Let $h: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$

(i) Work first on space of signed measure : flat or linear functional derivative $\frac{\delta}{\delta m}h$ $\downarrow \exists$ continuous function $[\delta h/\delta m]: \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ s.t.

$$\lim_{\varepsilon \downarrow 0} \frac{h\big((1-\varepsilon)m + \varepsilon m'\big) - h(m)}{\varepsilon} = \int \frac{\delta h}{\delta m}(m)(y)d(m' - m)(y)$$

 \downarrow defined up to additive constant \leadsto choose $\int [\delta h/\delta m](m)(y)dm)(y)=0$

(ii) Work with lift $\tilde{h}: L_2 \to \mathbb{R}$ of h: Lions' derivative $\partial_{\mu}h$ \downarrow Hilbert structure of $L_2 \leadsto$ Fréchet derivative $D\tilde{h}(X) =: \partial_{\mu}h(\mu)(X)$, law $(X) = \mu$ \downarrow 3 continuous function $\partial_{\mu}h: \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ s.t.

$$\phi \in L_2(\mu), \quad \lim_{\varepsilon \downarrow 0} \frac{h(\mu \circ (\mathrm{Id} + \varepsilon \phi)) - h(\mu)}{\varepsilon} = \int \partial_{\mu} h(\mu)(y) \cdot \phi(y) d\mu(y)$$

Let $h: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$

(i) Work first on space of signed measure : flat or linear functional derivative $\frac{\delta}{\delta m}h$ $\downarrow \exists$ continuous function $[\delta h/\delta m]: \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ s.t.

$$\lim_{\varepsilon \downarrow 0} \frac{h\big((1-\varepsilon)m + \varepsilon m'\big) - h(m)}{\varepsilon} = \int \frac{\delta h}{\delta m}(m)(y)d(m' - m)(y)$$

 \hookrightarrow defined up to additive constant \leadsto choose $\int [\delta h/\delta m](m)(y)dm)(y)=0$

$$\phi \in L_2(\mu), \quad \lim_{\varepsilon \downarrow 0} \frac{h(\mu \circ (\mathrm{Id} + \varepsilon \phi)) - h(\mu)}{\varepsilon} = \int \partial_{\mu} h(\mu)(y) \cdot \phi(y) d\mu(y)$$

- $[\delta h/\delta m]$ is bounded (sup-norm) $\rightsquigarrow h$ Lipschitz in total variation distance
- $\partial_{\mu}h$ is bounded (sup or L_2) $\leadsto h$ Lipschitz for \mathcal{W}_1 or \mathcal{W}_2

Let $h: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$

(i) Work first on space of signed measure : flat or linear functional derivative $\frac{\delta}{\delta m}h$ $\rightarrow \exists$ continuous function $[\delta h/\delta m]: \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \rightarrow \mathbb{R}$ s.t.

$$\lim_{\varepsilon \downarrow 0} \frac{h\big((1-\varepsilon)m + \varepsilon m'\big) - h(m)}{\varepsilon} = \int \frac{\delta h}{\delta m}(m)(y)d(m' - m)(y)$$

 \hookrightarrow defined up to additive constant \leadsto choose $\int [\delta h/\delta m](m)(y)dm)(y)=0$

$$\phi \in L_2(\mu), \quad \lim_{\varepsilon \downarrow 0} \frac{h(\mu \circ (\mathrm{Id} + \varepsilon \phi)) - h(\mu)}{\varepsilon} = \int \partial_{\mu} h(\mu)(y) \cdot \phi(y) d\mu(y)$$

- $[\delta h/\delta m]$ is bounded (sup-norm) $\rightsquigarrow h$ Lipschitz in total variation distance
- $\partial_{\mu}h$ is bounded (sup or L_2) $\leadsto h$ Lipschitz for W_1 or W_2

Lion's derivative stronger notion than flat derivative : give regularity w.r.t. "weaker topology"

• Under suitable (and reasonable) assumptions

$$\partial_{\mu} h(\mu)(y) = \partial_{y} \frac{\delta h}{\delta m}(\mu)(y)$$

- → Lions' derivative is gradient
- → Lions' derivative requires more regularity
- Higher order of differentiations :
 - ☐ Partial second order *L*-derivative :

$$\partial_y \partial_\mu h(\mu)(y) = \partial_y^2 \frac{\delta h}{\delta m}(\mu)(y)$$

□ Full second order L-derivative :

$$\partial_{\mu}^{2}h(\mu)(y) = \partial_{y}^{2}\frac{\delta^{2}h}{\delta m^{2}}(\mu)(y)$$

$$\begin{split} & \frac{d}{dt}h(\mu_t) \\ = & \lim_{h\downarrow 0}\frac{1}{h}(h(\mu_{t+h})-h(\mu_t)) \end{split}$$

• Choose the correct notion of differentiation? \rightarrow Need fo Itô's formula on $\mathcal{P}_2(\mathbb{R}^d) \leadsto$ compute $[d/dt]h(\mu_t)$

$$\begin{split} &\frac{d}{dt}h(\mu_t)\\ &= &\lim_{h\downarrow 0}\frac{1}{h}(h(\mu_{t+h})-h(\mu_t))\\ &= &\lim_{h\downarrow 0}\frac{1}{h}\int_0^1\int_{\mathbb{R}^d}\frac{\delta h}{\delta m}(\mu_t^\lambda)(y)d(\mu_{t+h}-\mu_t)(y) \end{split}$$

• Definition of flat derivative $(\mu_t^{\lambda} = \lambda \mu_t + (1 - \lambda)\mu_{t+h})$

• Choose the correct notion of differentiation ? \downarrow Need fo Itô's formula on $\mathcal{P}_2(\mathbb{R}^d) \leadsto$ compute $[d/dt]h(\mu_t)$

$$\begin{split} & \frac{d}{dt}h(\mu_t) \\ &= \lim_{h\downarrow 0}\frac{1}{h}\big(h(\mu_{t+h})-h(\mu_t)\big) \\ &= \lim_{h\downarrow 0}\frac{1}{h}\int_0^1\int_{\mathbb{R}^d}\frac{\delta h}{\delta m}(\mu_t^\lambda)(y)d(\mu_{t+h}-\mu_t)(y) \\ &= \lim_{h\downarrow 0}\frac{1}{h}\int_{\mathbb{R}^d}\mathbb{E}\left[\frac{\delta h}{\delta m}(\mu_t)(X_{t+h}^{t,\times})-\frac{\delta h}{\delta m}(\mu_t)(x)\right]d\mu_t(x) \end{split}$$

- Definition of flat derivative $(\mu_t^{\lambda} = \lambda \mu_t + (1 \lambda)\mu_{t+h})$
- Markov property $\leadsto \mu_{t+h} = \mu_t \star \mu_{t,t+h}$

• Choose the correct notion of differentiation? \rightarrow Need fo Itô's formula on $\mathcal{P}_2(\mathbb{R}^d) \leadsto$ compute $[d/dt]h(\mu_t)$

$$\begin{split} &\frac{d}{dt}h(\mu_t)\\ &=\lim_{h\downarrow 0}\frac{1}{h}(h(\mu_{t+h})-h(\mu_t))\\ &=\lim_{h\downarrow 0}\frac{1}{h}\int_0^1\int_{\mathbb{R}^d}\frac{\delta h}{\delta m}(\mu_t^\lambda)(y)d(\mu_{t+h}-\mu_t)(y)\\ &=\lim_{h\downarrow 0}\frac{1}{h}\int_{\mathbb{R}^d}\mathbb{E}\left[\frac{\delta h}{\delta m}(\mu_t)(X_{t+h}^{t,x})-\frac{\delta h}{\delta m}(\mu_t)(x)\right]d\mu_t(x)\\ &=\int_{\mathbb{R}^d}\mathbb{E}^{t,x}\left[\frac{d}{d\tau}\left(\frac{\delta h}{\delta m}(\mu_t)(X_\tau)\right)|_{\tau=t}\right]d\mu_t(x) \end{split}$$

- Definition of flat derivative $(\mu_t^{\lambda} = \lambda \mu_t + (1 \lambda)\mu_{t+h})$
- Markov property $\rightsquigarrow \mu_{t+h} = \mu_t \star \mu_{t,t+h}$

$$\begin{split} &\frac{d}{dt}h(\mu_t) \\ &= \lim_{h\downarrow 0} \frac{1}{h} (h(\mu_{t+h}) - h(\mu_t)) \\ &= \lim_{h\downarrow 0} \frac{1}{h} \int_0^1 \int_{\mathbb{R}^d} \frac{\delta h}{\delta m} (\mu_t^{\lambda})(y) d(\mu_{t+h} - \mu_t)(y) \\ &= \lim_{h\downarrow 0} \frac{1}{h} \int_{\mathbb{R}^d} \mathbb{E} \left[\frac{\delta h}{\delta m} (\mu_t) (X_{t+h}^{t,x}) - \frac{\delta h}{\delta m} (\mu_t)(x) \right] d\mu_t(x) \\ &= \int_{\mathbb{R}^d} \mathbb{E}^{t,x} \left[\frac{d}{d\tau} \left(\frac{\delta h}{\delta m} (\mu_t) (X_{\tau}) \right) |_{\tau=t} \right] d\mu_t(x) \\ &= \int_{\mathbb{R}^d} \mathbb{E}^{t,x} \left[b(t,x,\mu_t) \cdot \partial_y \frac{\delta h}{\delta m} (\mu_t) (X_t) + \frac{1}{2} \mathrm{Tr} [\sigma \sigma^*(t,x,\mu_t) \partial_y^2 \frac{\delta h}{\delta m} (\mu_t) (X_t)] \right] d\mu_t(x) \end{split}$$

- Definition of flat derivative $(\mu_t^{\lambda} = \lambda \mu_t + (1 \lambda)\mu_{t+h})$
- Markov property $\rightsquigarrow \mu_{t+h} = \mu_t \star \mu_{t,t+h}$
- Classical Itô's formula

• Choose the correct notion of differentiation? \downarrow Need fo Itô's formula on $\mathcal{P}_2(\mathbb{R}^d) \leadsto$ compute $[d/dt]h(\mu_t)$

$$\begin{split} &\frac{d}{dt}h(\mu_t) \\ &= \lim_{h\downarrow 0}\frac{1}{h}(h(\mu_{t+h})-h(\mu_t)) \\ &= \lim_{h\downarrow 0}\frac{1}{h}\int_0^1\int_{\mathbb{R}^d}\frac{\delta h}{\delta m}(\mu_t^\lambda)(y)d(\mu_{t+h}-\mu_t)(y) \\ &= \lim_{h\downarrow 0}\frac{1}{h}\int_{\mathbb{R}^d}\mathbb{E}\left[\frac{\delta h}{\delta m}(\mu_t)(X_{t+h}^{t,\lambda})-\frac{\delta h}{\delta m}(\mu_t)(x)\right]d\mu_t(x) \\ &= \int_{\mathbb{R}^d}\mathbb{E}^{t,x}\left[\frac{d}{d\tau}\left(\frac{\delta h}{\delta m}(\mu_t)(X_\tau)\right)|_{\tau=t}\right]d\mu_t(x) \\ &= \int_{\mathbb{R}^d}\mathbb{E}^{t,x}\left[b(t,x,\mu_t)\cdot\partial_y\frac{\delta h}{\delta m}(\mu_t)(X_t)+\frac{1}{2}\mathrm{Tr}[\sigma\sigma^*(t,x,\mu_t)\partial_y^2\frac{\delta h}{\delta m}(\mu_t)(X_t)]\right]d\mu_t(x) \\ &= \int_{\mathbb{R}^d}\left[b(t,x,\mu_t)\cdot\partial_\mu h(\mu_t)(x)+\frac{1}{2}\sigma\sigma^*(t,x,\mu_t)\partial_y\partial_\mu h(\mu_t)(x)\right]d\mu_t(x) \end{split}$$

- Definition of flat derivative $(\mu_t^{\lambda} = \lambda \mu_t + (1 \lambda)\mu_{t+h})$
- Markov property $\rightsquigarrow \mu_{t+h} = \mu_t \star \mu_{t,t+h}$
- Classical Itô's formula
- link between flat and Lions' derivative

McKean-Vlasov SDE - associated Kolmogorov PDE on \mathcal{P}_2

On [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s,X_s,\mu_s)ds + \int_0^t \sigma(s,X_s,\mu_s)dB_s, \quad X_0 \in L^2,$$

B is a B.M.

• Deduce through Itô's formula that associated Kolmogorov equation writes

$$\partial_t u(t,\mu) + \int b(t,x,\mu) \cdot \partial_\mu u(t,\mu)(x) d\mu(x) + \frac{1}{2} \int \text{Tr}[(\sigma\sigma^*)(t,x,\mu)\partial_x\partial_\mu u(t,\mu)(x)] d\mu(x) = 0$$

→ Well-posedness for smooth coefficients (Buckdahn&Li&Peng - Chassagneux&Crisan&Delarue - Crisan&McMurray).

- Smoothing properties? which regularity?
- Search for a map $[0,t) \times \mathcal{P}_2(\mathbb{R}^d) \ni (s,\mu) \mapsto p(\mu,s,t,z), \ (t,z) \in [0,T] \times \mathbb{R}^d$ s.t.
 - (i) For every fixed $(t,z) \in [0,T] \times \mathbb{R}^d$, the map $[0,t) \times \mathcal{P}_2(\mathbb{R}^d) \ni (s,\mu) \mapsto p(\mu,s,t,z)$ satisfies

$$(\partial_s + \mathcal{L}_s)p(\mu, s, t, z) = 0$$
 on $[0, t) \times \mathcal{P}_2(\mathbb{R}^d)$.

(ii) For any $\mu \in \mathcal{P}_2(\mathbb{R}^d)$

$$\lim_{s \uparrow t} p(\mu, s, t, z) = \delta_z(.) \star \mu$$

• If it exists, p should be density of the MKV process! $p(\mu, s, t, \cdot) = d\mu_t^{s, \mu}$

McKean-Vlasov SDE - density?

• Consider MKV SDE with $\sigma > 0$

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2$$

• Introduce decoupled flow $X^{t,x,\mu}$: SDE frozen along the transport of μ along the flow $(\mu_s^{t,\mu})_{t\leqslant s\leqslant T}$

$$X_t^{t,x,\mu} = x + \int_t^s b(r, X_r^{t,x,\mu}, \mu_r^{t,\mu}) dr + \int_0^t \sigma(r, X_r^{t,x,\mu}, \mu_r^{t,\mu}) dB_s, \quad x \in \mathbb{R}^d$$

 \rightarrow Density $p(t, \mu; t, x, s, \cdot)$ admits parametrix expansion :

$$p(t, \mu; t, x, s, \cdot) = g\left(\int_{t}^{s} (\sigma\sigma^{*})(r, \tilde{x}, \mu_{r}^{t, \mu}) dr, \cdot -x - \int_{t}^{s} b(r, \tilde{x}, \mu_{r}^{t, \mu}) dr\right) + \operatorname{Remainder}(t, \mu, (s-t))$$

 \downarrow g is Gaussian kernel \leadsto recovering (usual) smoothing on physical space

Weak ∃! MKV SDE admits density

$$p(\mu, t, s, \cdot) = \int p(t, \mu; t, x, s, \cdot) d\mu(x) (= d\mu_s^{t, x}!)$$

→ parametrix expansion around Gaussian kernel!

MKV SDE - density : regularity in μ variable - building block

Let $h: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$ with continuous and bounded flat derivative, flow $(\mu_t^{0,\mu})_{0\leqslant t\leqslant \mathcal{T}}$ given by unique weak solution of

$$X_t = \xi + B_t, \quad \xi \sim \mu$$

$$\begin{array}{lcl} h(\mu_{t}^{0,\mu}) - h(\mu_{t}^{0,\mu'}) & = & h(\mu \star g_{t}) - h(\mu' \star g_{t}) \\ & = & \int_{0}^{1} \int \frac{\delta h}{\delta m} (\lambda \mu_{t}^{0,\mu} + (1-\lambda) \mu_{t}^{0,\mu'})(y) g_{t}(y-x) d(\mu-\mu')(x) dy d\lambda \end{array}$$

Flat derivative is $\frac{\delta}{\delta m} h(\mu_t^{0,\mu})(x) = \int \frac{\delta h}{\delta m} (\mu_t^{0,\mu})(y) g_t(y-x) dy$

• $(\mu, x) \mapsto [\delta h/\delta m](\mu)(x)$ jointly continuous and bounded \mapsto Recovering spatial smoothing : $x \mapsto \frac{\delta}{\delta m} h(\mu_t^{0,\mu})(x)$ is smooth!

 \leadsto h Lions' differentiable (first and second order partial derivative) \leadsto sufficient for chain rule!

 \leadsto First and second derivatives blow up at rate resp. $t^{-1/2}$ and t^{-1} ! \leadsto second order possibly too coarse!

MKV SDE / smoothing of MKV semigroup - zoology

Let $h: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, flot $(\mu_t^{0,\mu})_{0 \leqslant t \leqslant T}$ given by unique weak solution of

$$dX_t = dB_t, \quad X_0 = \xi \sim \mu$$

• Regularization by smooth flow of probability measure : $\mu \mapsto h(\mu)$ "only" flat differentiable with bounded and continuous flat derivative :

$$\longrightarrow \mu \mapsto h(\mu_t^{0,\mu})$$
 L-differentiable (first and partial 2^{nd} order!), blow up at resp. $t^{-1/2}$ and t^{-1} $\longrightarrow \mu \mapsto h(\mu_t^{0,\mu})$ now Lipschitz w.r.t. d_1 where

$$d_{\eta}(\mu, \nu) = \inf_{\pi \text{ coupling}} \int \{|x - y|^{\eta} \wedge 1\} d\pi(x, y), \quad \eta \in (0, 1]$$

 \downarrow weakining of the topology : from TV to d and hence Wasserstein!

• Assume in addition $x \mapsto [\delta h/\delta m](\mu)(x)$ is η -Hölder continuous :

$$\vdash$$
, h is now Lipschitz for d_η $\longleftrightarrow h (\mu_t^{0,\mu})$ L-differentiable (first and partial 2^{nd} order!), blow up at resp. $t^{-(1+\eta)/2}$ and $t^{-1+\eta/2}$

⇒ singularity is now integrable!

$$\downarrow \mu \mapsto h(\mu_t^{0,\mu})$$
 now Lipschitz w.r.t. d_1 (and Wasserstein 1-2) weakining of the topology

Previous (partial) results on smoothing by Banos - CdR - McMurray - Crisan&McMurray

MKV SDE - smoothness of density

Consider MKV SDE with σ > 0, coefficients admit twice bounded continuous flat derivative
+ first and second flat derivatives Hölder continuous in space

$$\begin{split} dX_t &= b(t, X_t, \mu_t) dt + \sigma(t, X_t, \mu_t) dB_t, \quad X_0 \in L_2 \\ dX_t^{s, x, \mu} &= b(t, X_t^{s, x, \mu}, \mu_t^{s, \mu}) dt + \sigma(t, X_t^{s, x, \mu}, \mu_t^{s, \mu}) dB_t, \quad X_0^{x, \mu} = x \in \mathbb{R}^d \\ p(t, \mu; t, x, s, \cdot) &= g\left(\int_t^s (\sigma \sigma^*)(r, \tilde{x}, \mu_r^{t, \mu}) dr, \cdot - x - \int_t^s b(r, \tilde{x}, \mu_r^{t, \mu}) dr\right) + R(t, \mu, (s - t)) \end{split}$$

- MKV SDE admits density $p(\mu, t, s, \cdot) = \int p(t, \mu; t, x, s, \cdot) d\mu(x) (= d\mu_s^{t, x}!)$
- Handle circular problem through Picard procedure : $\downarrow \big\{ \big((\mu_s^{t,\mu})_{t\leqslant s\leqslant \mathcal{T}} \big)^\ell \big\}_{\ell\geqslant 0} \text{ through Picard iteration on MKV-SDE initialized at } \nu\neq \mu$
 - \downarrow $(p_\ell)_{\ell\geqslant 0}$ corresponding decoupled flow \leadsto L-differentiability at step $\ell+1 \leadsto$ diff. + smoothing for flow at step $\ell+1...$
 - → Uniform control + equicontinuity w converging subsequence through compactness
- $p(t, \mu, s, x, y)$ and $p(t, \mu, s, y)$ smooth in all variable + Gaussian type bounds
 - ightharpoonup Blow up smoothed by $\eta/2$ for *L*-derivative

From smoothing to W.P. for non-degenerate MKV - SDE - use of \exists of density

On [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

- Correct framework seems to be coefficients with bounded and continuous flat derivative (possibly need of Hölder regularity in space and for flat derivative) who results in that direction
- Idea : use existence of density and parametrix expansion (order 1)
 - ightharpoonup Space = { $\mathbf{P} \in \mathcal{C}([s, T], \mathcal{P}(\mathbb{R}^d), \mathbf{P}(s) = \mu, \mathbf{P}(t)$ with density p, TV}
 - \rightarrow Compute $[\delta/\delta m]p$ and show it is bounded
 - → Derive Lipschitz in TV w fixed point procedure converges
 - Need for Hölder continuity for $\sigma\sigma^*$ to handle remainder of parametrix expansion!
- Result Under these assumptions ∃! weak sol of MKV-SDE
 - → Work for bounded drift Lipschitz in TV

Examples

On [0, T], T > 0,

$$X_t = X_0 + \int_0^t \textbf{b}(s,X_s,\mu_s) ds + \int_0^t \sigma(s,X_s,\mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M.

V→ Weak W.P. for

- M order interaction $h(t,x,\mu) = \int \varphi(t,x,z_1,\ldots,z_M) d\mu(z_1)\ldots d\mu(z_M)$ $\downarrow \varphi$ measurable and bounded + η -Hölder continuous
- Scalar interaction $h(t,x,\mu) = \int \varphi\Big(t,x,\int \varphi_1 d\mu,\dots,\int \varphi_M d\mu\Big)$ $\mapsto \varphi$ measurable and bounded, $z\mapsto \varphi(t,x,\mathbf{z})$ Lipschitz $+x\mapsto \varphi(t,x,\mathbf{z})$ η -Hölder $\mapsto \varphi_i$ measurable and bounded $+\eta$ -Hölder continuous
- Polynomial on Wasserstein space $h(t,x,\mu) = \prod_{i=1}^N \left[\int \varphi_i(t,x,z) d\mu(z) \right]$ $\mapsto \varphi$ measurable and bounded $+ \eta$ -Hölder continuous

+Lipschitz in space >>>> Strong W.P.

MKV SDE - (back to) associated Kolmogorov PDE on \mathcal{P}_2

On [0, T], T > 0,

$$\partial_t u(t,\mu) + \int b(t,x,\mu) \cdot \partial_\mu u(t,\mu)(x) d\mu(x) + \frac{1}{2} \int \mathrm{Tr}[(\sigma\sigma^*)(t,x,\mu) \partial_x \partial_\mu u(t,\mu)(x)] d\mu(x) = 0$$

Coefficients are bounded and η -Hölder in space and (twice) flat differentiable with bounded η -Hölder continuous derivative

• Result The backward Kolmogorov equation admits a unique fundamental solution $p(\mu, s, t, z)$ which writes

$$p(\mu, s, t, z) = \int p(t, \mu, s, x, t, z) d\mu(x)$$

and (first and partial-second) L-derivatives admit Gaussian type bound with blow up at resp. $t^{-(1+\eta)/2}$ and $t^{-1+\eta/2}$

 Result Cauchy problem associated with backward Kolmogorov equation admits classical solution

$$u(t,\mu) = \frac{\phi(\mu_T^{t,\mu})}{\int_t^T f(s,\mu_s^{t,\mu}) ds}$$

for any flat differentiable with bounded and Hölder continuous derivative source term and any bounded with continuous and bounded flat differentiable terminal condition

MKV SDE - (back to) associated PDE on $\mathbb{R}^d imes \mathcal{P}_2$

$$\begin{split} dX_t &= b(t, X_t, \mu_t) dt + \sigma(t, X_t, \mu_t) dB_t, \quad X_0 \in L_2 \\ dX_t^{s, x, \mu} &= b(t, X_t^{s, x, \mu}, \mu_t^{s, \mu}) dt + \sigma(t, X_t^{s, x, \mu}, \mu_t^{s, \mu}) dB_t, \quad X_0^{x, \mu} = \mathbf{x} \in \mathbb{R}^d \end{split}$$

Coefficients are bounded and η -Hölder in space and (twice) flat differentiable with bounded η -Hölder continuous derivative

- Solution (X, μ) is Markov on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$ \hookrightarrow generator \mathscr{L} acts on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \leadsto \mathscr{L} = L + \mathcal{L}$
- Search for dynamic of $u(t, X_t, \mu_t) = \mathbb{E}[\varphi(X_T, \mu_T) | (X_t, \mu_t)]$ \downarrow use decoupled flow $u(t, x, \mu) = \mathbb{E}[\varphi(X_T^{t, x, \mu}, \mu_T^{t, \mu})] + \text{Markov} + \text{Itô to derive}$

$$(\partial_t + \mathscr{L})u(t, x, \mu) = 0, \quad u(T, \cdot, \cdot) = \varphi$$

• Result The Cauchy pb associated with ${\mathscr L}$ with data $({\mathsf f},\varphi)$ admits a unique classical solution

$$u(t,x,\mu) = \mathbb{E}[\varphi(X_T^{t,x,\mu}, \mu_T^{t,\mu}) + \int_t^T f(s, X_s^{t,x,\mu}, \mu_s^{t,\mu}) ds]$$

for bounded with bounded flat differentiable terminal condition and bounded and Hölder with bounded and Hölder flat differentiable source term

→ works for source locally Hölder (space + flat derivative)

From PDE to Prop of chaos - path level

Recall that on [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M. gives asymptotic (N $ightarrow +\infty$) dynamic of one particle interacting in mean field

$$X_t^i = X_0^i + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \, \mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i} dB_s^i$$

- - \leadsto require to control second $L\text{-derivative}\ \partial_{\mu}^2\,!$ \leadsto need to work with Picard approximation !
- Result. Under assumptions for PDE on $\mathbb{R}^d imes \mathcal{P}_2(\mathbb{R}^d) + \text{Lip. diff.}$ and moment one has

$$\mathbb{E}[\sup_{t\leqslant T}|\frac{X_t^i}{-\bar{X}_t^i}|^2]\leqslant N^{-2/(d\vee 4)},\quad (\text{up to log for }d=4)$$

From PDE to Prop of chaos - density level

Recall that on [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M. gives asymptotic $(N \to +\infty)$ dynamic of one particle interacting in mean field

$$X_t^i = X_0^i + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \ \mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i} dA_s^i$$

 \downarrow Use fact that p is fundamental solution

 \leadsto require to control second $\emph{L}\text{-derivative}~\partial_{\mu}^{2}\,!$ \leadsto need to work with Picard approximation !

$$\iff \text{leads to } |(p^{1,N}-p)(\mu,0,t,z)| \leqslant |\mathbb{E}[\rho(\mu_0^N,0,t,z)-\rho(\mu,0,t,z)]| + \mathsf{Remainder}$$

→ Conclusion thanks to regularity on p

• Result. Under assumptions for PDE on $\mathcal{P}_2(\mathbb{R}^d)$ one has

$$|(\rho^{1,N}-\rho)(\mu,0,t,z)| \leqslant \frac{K}{N} \left\{ \frac{1}{t^{\frac{1-\eta}{2}}} \int_{\mathbb{R}^d} g(ct,z-x)|x| d\mu(x) + \frac{1}{t^{1-\frac{\eta}{2}}} \int_{\mathbb{R}^d} g(ct,z-x) d\mu(x) \right\}$$

From PDE to Prop of chaos - semigroup level

Recall that on [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M. gives asymptotic $(N \to +\infty)$ dynamic of one particle interacting in mean field

$$X_t^i = X_0^i + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \, \mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i} dB_s^i$$

- - $\mathrel{\ \, \sqcup \ \, }$ Use fact that U solves Kolmogorov PDE on Wasserstein space
 - \leadsto require to control second $\emph{L}\text{-derivative}~\partial_{\mu}^{2}~!$ \leadsto need to work with Picard approximation !
 - leads to $|(U(t,\mu_t^N) U(t,\mu))| \le |\mathbb{E}[U(0,\mu_0^N) U(0,\mu_0)]| + \text{Remainder} \ge \frac{C}{N}$
 - \downarrow Conclusion thanks to regularity on U
- Result. Under assumptions for PDE on $\mathcal{P}_2(\mathbb{R}^d)$ one has, for all ϕ in $\mathscr{C}^2_{b,\alpha}$

$$\mathbb{E}[|\phi(\mu_T^N) - \phi(\mu_T)|] \leqslant CT^{\frac{-1+\alpha}{2}}W_1(\mu_0, \mu_0^N), \quad |\mathbb{E}[\phi(\mu_T^N)]| - \phi(\mu_T)| \leqslant CT^{-1+\frac{\alpha}{2}}\frac{C}{N}$$

→ First order expansion through additional assumptions

From PDE to Prop of chaos - semigroup level

Recall that on [0, T], T > 0,

$$X_t = X_0 + \int_0^t b(s, X_s, \mu_s) ds + \int_0^t \sigma(s, X_s, \mu_s) dB_s, \quad X_0 \in L^2,$$

B is a B.M. gives asymptotic (N $ightarrow +\infty$) dynamic of one particle interacting in mean field

$$X_t^i = X_0^i + \int_0^t b(s, X_s^i, \mu_s^N) ds + \int_0^t \sigma(s, X_s^i, \mu_s^N) dB_s^i, \quad i = 1, \dots, N, \ \mu_s^N = N^{-1} \sum_{i=1}^N \delta_{X_s^i} dS_s^i$$

- - \downarrow Use fact that U solves Kolmogorov PDE on Wasserstein space
 - \leadsto require to control second $L\text{-derivative}\ \partial^2_\mu\,!$ \leadsto need to work with Picard approximation !
 - $\iff \text{leads to } |(\textit{U}(t,\mu_t^N) \textit{U}(t,\mu)| \leqslant |\mathbb{E}[\textit{U}(0,\mu_0^N) \textit{U}(0,\mu_0]| + \text{Remainder} \approx \frac{\textit{C}}{\textit{N}}$
 - \downarrow Conclusion thanks to regularity on U
 - Result. Under assumptions for PDE on $\mathcal{P}_2(\mathbb{R}^d)$ one has, for all ϕ in $\mathscr{C}^2_{b,\alpha}$

$$\mathbb{E}[|\phi(\mu_T^N) - \phi(\mu_T)|] \leqslant CT^{\frac{-1+\alpha}{2}}W_1(\mu_0, \mu_0^N), \quad |\mathbb{E}[\phi(\mu_T^N)]| - \phi(\mu_T)| \leqslant CT^{-1+\frac{\alpha}{2}}\frac{C}{N}$$

- ☐ First order expansion through additional assumptions

Thank you!