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McKean-Vlasov SDE
On[0,T], T>0,
t t
Xt = Xo +f b(s, Xs, j1s)ds + j o(s, Xs, ps)dBs,  Xo € L2,
0 0
B is a B.M.

L, Dynamic feels current state in physical space as well as its statistical distribution

L, Sometimes called “distribution dependent” / “non-linear” / “mean-field” - SDE
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McKean-Vlasov SDE
On[0,T], T >0,
t t
Xt = Xo +f b(s, Xs, p1s)ds + J o(s, Xs, us)dBs,  Xo € L2,
0 0
Bis a B.M.
L, Dynamic feels current state in physical space as well as its statistical distribution
L, Sometimes called “distribution dependent” / “non-linear” / “mean-field” - SDE
e Law given as the solution of non-linear Fokker-Planck equation (distributional sense)
Oepe + div(peb(t, -, p10)) + [1/2] D% (peoo™ (¢, 1)) = 0, po = [Xo]

o Gives the asymptotic (N — +o0) dynamic of one particle interacting in mean field

X{ = X0+ | (s XL p)ds + [ oo XL u)dBL T= 1N,
(A

pd =Nty Oxis  Xg~ Xo
i=1

L, Popular for (e.g.) applications/connection in/with MFG, ANN



A MKV- SDE - well posedness
on[0,T], T >0,

t t
Xe=Xo+ | b(s,Xeos)ds + [ ol Xepe)dBs, Xo€ L2,
0 0
Bis a B.M.
e Cauchy-Lipschitz theory :

Ls Sensitive : two unknowns (position/distribution)

e Need to suitable choice of space and metric :

L, space is RY x P,(R9)

L metricis (] - — o |, Wa(+,0))
Po®) = {ueP@®), st [|-Pau<of pz1
Wp(p,p') = inf {J\x—y|pd7r(x,y)} p=1
7, coupling of pu,p”

N

E[IX - X/|p:|7 X ~p, X'~ /jf/

e W.P. (3! path and law) for Lipschitz coefficients on RY x P, (R9)



MKV-SDE : ill vs well - posedness

e Beyond Cauchy-Lipschitz theory v hard !
L, Analogy with classical setting (Stroock&Varadhan M.P.s theory / Zvonkin's theory)
(i) C.E. 1 (Sheutzow)
L Xe = Xo+ Sé E[b(Xs)]ds, b locally Lipschitz (even bounded!) ww~» may be ill-posed
L “relies on summation of local-Lipschitz constant over supp{u}”

(if) E. (Shiga and Tanaka) v~ extensions (Jourdain - Mishura&Veretennikov - Lacker - Réckner
& Zhang)

L Xe = Xo + Sé E[b(Xs)]ds + B:, b bounded locally Lipschitz (even only bounded!) v~ 3!
L v~ (drift continuous +bounded & Lip TV +diffusion linear & > 0)

L, Noise may help?
(iif) C.E. 2 (Delarue)
L Xe = Xo + Sot b(E[Xs)])ds + B, b bounded (even Holder!)
v~ may have several solutions!
L> relies on ill posedness of x; = b(x¢)

e Finite dimensional noise to smooth infinite dimensional variable v~ tricky smoothing
properties v~ need to investigate associated PDE



o Wi(u,v) = sup{Uhdu—fhdu

N I FTSES 1}(Kantorovitch)

1
o TV(u,v) = 5 sup {Uhdu - Jhdu

1
Al < 1) = 310"~ 5l

L, K compact subset of RY,
wv € P2(K),  Wi(p,v) < diam(K)TV(u,v)

L, For coefficients c(u) = § pdu ~~~> no need of regularity on ¢ to be Lipschitz in TV.



MKV-SDE : ill vs well - posedness

e Beyond Cauchy-Lipschitz theory v hard !
L, Analogy with classical setting (Stroock&Varadhan M.P.s theory / Zvonkin's theory)
(i) C.E. 1 (Sheutzow)
L Xe = Xo+ Sé E[b(Xs)]ds, b locally Lipschitz (even bounded!) ww~» may be ill-posed
L “relies on summation of local-Lipschitz constant over supp{u}”

(if) E. (Shiga and Tanaka) v~ extensions (Jourdain - Mishura&Veretennikov - Lacker - Réckner
& Zhang)

L Xe = Xo + Sé E[b(Xs)]ds + B:, b bounded locally Lipschitz (even only bounded!) v~ 3!
L v~ (drift continuous +bounded & Lip TV +diffusion linear & > 0)

L, Noise may help?
(iif) C.E. 2 (Delarue)
L Xe = Xo + Sot b(E[Xs)])ds + B, b bounded (even Holder!)
v~ may have several solutions!
L> relies on ill posedness of x; = b(x¢)

e Finite dimensional noise to smooth infinite dimensional variable v~ tricky smoothing
properties v~ need to investigate associated PDE



MKV & Mean Field SDE- Chaos propagation
Recall that on [0, T], T > 0,
t t
Xt = Xo +j b(s, Xs, pis)ds + j o(s, Xs, s)dBs, Xp € L2,
0 0
B is a B.M. gives asymptotic (N — +0o0) dynamic of one particle interacting in mean field

. . t . t . .
X=X+ [ bl X nlds + [ oo XE i )OBL =1 = Y 6
0 0 °

o Coefficients Lipschitz on R? x P, (R?) v propagation of chaos at the level of path
(Sznitman) : - o - )
X' = MKV-SDE(X{, B'), E[sup |Xi - X{[*]<N~?

t<T

o Coefficients Lipschitz on RY x P, (RY) ww~» propagation of chaos at the level of semigroup
(Carmona-Delarue) :

V¥ smooth ¢ E[sup |¢(ul) — ¢(ue)]] < N~V (up to log for d = 2)
t<T

o Coefficients continuous, bounded on RY x Pg(Rd) + Lipschitz in TV 4+ o > 0 & “linear”
L, propagation of chaos in TV between k-uplet - no rate - (Lacker)

v~ Noise restores propagation of chaos? v~» Need to investigate smoothing properties



McKean-Vlasov SDE - associated PDE
on[0,T], T >0,
t t
Xt = Xo +f b(s, Xs, j1s)ds + J o(s, Xs, ps)dBs,  Xo € L2,
0 0
Bis a B.M.
e Search for generator .Z
L, Solution (X, 1) is Markov on R? x P (RY)
L, Exists measurable map u: [0, T] x R x P(RY) — R s.t.
V¢ “smooth enough” Vt € [0, T], E[p(Xt,pu1)|(Xe, ne)] = u(t, Xe, pt).
e Dynamic of u?
e generator should be PDE operator on R x P, (R9)

L, Derivative of map along flow of measure ?

L, 1t&'s formula on RY x Pp(R9)?



Differentiability of functions of measure

Let h: Pr(RY) —» R
5
(i) Work first on space of signed measure : flat or linear functional derivative (;—h
m

L, 3 continuous function [§h/dm] : P2(RY) x RY — R s.t.

lim
l0 e

h((1 —e)m +em’) — h(m) _ f (‘&(m)(y)d(m' —m)(y)

Sm
L, defined up to additive constant v choose §[6h/6m](m)(y)dm)(y) =0
(i) Work with lift h: Ly — R of h: Lions’ derivative d, h

L, Hilbert structure of Ly v~ Fréchet derivative Dh(X) =: Ouh(p)(X), law(X) = p
L, 3 continuous function d,h: Po(RY) x RY - R s.t.

h(p o (1d + £)) — h(y)
15

b€ L), IE'TS = Jﬁyh(u)(y) ~p(y)duly)

oh
e Example : ¢ smooth. h: p+— §odp v ;— =@, Ouh=Vep
om
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L h((L—e)m+em’) — h(m) = §p(2)d[(1 —e)m +em’ — m](z) = e §pd(m' — m)

L Yels, h(X+Y)~hX)=E[p(X+Y)=eX)] =E[Ve(X)- Y]+ o(|Y]L,)
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e [0h/dm]| is bounded (sup-norm) v h Lipschitz in total variation distance
e 0, his bounded (sup or Ly) v h Lipschitz for Wy or W»



Differentiability of functions of measure

Let h: Pr(RY) —» R

' . . . o6
(i) Work first on space of signed measure : flat or linear functional derivative 6—!7
m

L, 3 continuous function [§h/dm] : P2(RY) x RY — R s.t.

() )d(m' — m) ()

lim
l0 e

h((1—&)m+em’) — h(m) :f )

L, defined up to additive constant v choose §[6h/6m](m)(y)dm)(y) =0

(i) Work with lift h: Ly — R of h: Lions’ derivative d, h
L, Hilbert structure of Ly v~ Fréchet derivative Dh(X) =: Ouh(p)(X), law(X) = p
L, 3 continuous function 0, h: P2(RY) x RY — R s.t.

h(po (1d + e¢)) — h(p)
€

b€ L), IEI??) = Jc’uh(u)(y) ~p(y)duly)

e [0h/dm]| is bounded (sup-norm) v h Lipschitz in total variation distance
e 0, his bounded (sup or Ly) v h Lipschitz for Wy or W»

Lion’s derivative stronger notion than flat derivative : give regularity w.r.t. “weaker topology”



Differentiability of functions of measure : links

o Under suitable (and reasonable) assumptions

h

2uh() () = &y 5 (1))

L, Lions’ derivative is gradient

L» Lions’ derivative requires more regularity

e Higher order of differentiations :
L, Partial second order L-derivative :
oh
dy0uh(1)(y) = 35— (1)(y)
m
L, Full second order L-derivative :
_2 5%h

OLh((y) = 05—

(W) (y)



Need for chain rule (& Ité's formula) on P> (informal, for diff. proc.)

e Choose the correct notion of differentiation ?
L, Need fo I1t8's formula on P2 (R9) v~ compute [d/dt]h(p:)

d
—h
e (pe)

= tim 5 (W) = ()
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Need for chain rule (~ Ité’'s formula) on P, (informal, for diff. proc.)

e Choose the correct notion of differentiation ?
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Need for chain rule (~ Ité’'s formula) on P, (informal, for diff. proc.)

e Choose the correct notion of differentiation ?
L, Need fo I1t8's formula on P2 (R9) v~ compute [d/dt]h(p:)

d
—h
dt (Mt)

—tim > (h(ees) — her)

— |h|?(1) hf fRd 5 (P y)d(pern — pe)(y)

= lim= JIE[M( (X)) — h(ur)(X)]d#r(X)

)
hi0 h Jrd om om
S DLl P LIRS [ Py
[ b 0 S (X0 + 3Tl (6, 5 () (X0 ()

= [ Bt 0uue) )+ 300 (5, 100,Bh)5) | e )
Rd

Definition of flat derivative (u} = Aue + (1 — N peyn)
Markov property v fisyp = e * fit ¢ +h

Classical Itd's formula

link between flat and Lions’ derivative



McKean-Vlasov SDE - associated Kolmogorov PDE on P,

On[0,T], T>0,
t t
Xt = Xo +f b(s, Xs, j1s)ds + j o(s, Xs, p1s)dBs,  Xo € L2,
0 0
B is a B.M.

e Deduce through Ité's formula that associated Kolmogorov equation writes
1 ,
deu(t, )+ f b(t,x, 1) - (1) () dp(x) + 5 j Tr[(00™®)(¢,x, 1) x0pu(t, 1) ()] dpa(x) = 0

L, Well-posedness for smooth coefficients (Buckdahn&Li&Peng -
Chassagneux&Crisan&Delarue - Crisan&McMurray).

e Smoothing properties 7 v fundamental solution ? If yes, which regularity ?
o Search for a map [0, t) x P2(R?) 3 (s, ) = p(u, s, t,z), (t,z) € [0, T] x RY s.t.

(i) For every fixed (t,z) € [0, T] x RY, the map [0,t) x P2(RY) 3 (s, ) — p(u, s, t, 2)
satisfies
(0s + Ls)p(p,s,t,z) =0  on [0,t) x ’Pg(]Rd).

(i) For any p e Py(RY)
Iigﬂ p(u,s,t,2) = 8;(.) * p
stt

e If it exists, p should be density of the MKV process! p(y,s. t. ) = duj*



McKean-Vlasov SDE - density ?

e Consider MKV SDE with o > 0

t t
X: = Xp +J b(s, Xs, s )ds + J o(s, Xs, us)dBs, Xp € L?
0 0

o Introduce decoupled flow X®*# : SDE frozen along the transport of y along the flow
t,
(1" )es<T

S t
XM = x + f b(r, XEOH, urt)dr + f a(r, XM up*)dBs, xeR?
t 0

L, Classical SDE v~ admits (transition) density p(t, u; t, x, s, -)
L Density p(t, y1; t, x, s, ) admits parametrix expansion :

S

S
p(t,p;t,x,s,+) = g(J (oo™)(r, %, pp*)dr, -fxfj b(r, %, ,ui’“)dr) +Remainder(t, i1, (s—t))
t t

L, g is Gaussian kernel v~ recovering (usual) smoothing on physical space
e Weak 3! MKV SDE admits density

Pl t5,) = [ ple. x5, ) (- i)

L, parametrix expansion around Gaussian kernel !
L, Search for regularity in p : Problem is circular!



MKV SDE - density : regularity in 4 variable - building block

Let h: P2(RY) — R with continuous and bounded flat derivative, flow (1"")o<;<7 given by
unique weak solution of

=&+ B, §~up

o Lions's differentiability of 1 — h(u2*)?
L Writes h(u2") = h(uxgt), gt gaussian kernel (0, t), take p, i/ in Pa(RY) :
h(ug™) = h(g™) h(u*gt) — h(u'+gt)

- [ j SO+ (L= Ry = x)dl (1 — 1) (x) el

)
v Flat derivative is — h( ,ut f y)ge(y — x)dy
om om

o (u,x) — [6h/dm](p)(x) jointly continuous and bounded
L Recovering spatial smoothing : x — J—h(,u?’”)(x) is smooth !
m
v~ h Lions' differentiable (first and second order partial derivative) v~ sufficient for chain
rule!

w~> First and second derivatives blow up at rate resp. t=%/2 and t 1 | w~> second order
possibly too coarse !



MKV SDE / smoothing of MKV semigroup - zoology

Let h: Py(RY) — R, flot (u?’“)ogtér given by unique weak solution of

dX; =dB:, Xo=E&~p

e Regularization by smooth flow of probability measure : p — h(u) “only” flat differentiable
with bounded and continuous flat derivative :

o > h(,u?’“) L-differentiable (first and partial 2" order!), blow up at resp. t—%/2 and t~1

w11 > h(u*) now Lipschitz w.r.t. di where

dalov) = inf [llx=yl” A Ldn(xy), me ©.1]

L, weakining of the topology : from TV to d and hence Wasserstein !

e Assume in addition x — [§h/0m](u)(x) is n-Hélder continuous :
L his now Lipschitz for d,

A > h(uf’“) L-differentiable (first and partial 2nd order 1), blow up at resp. t—(@+m)/2
and t—1+n/2

L, singularity is now integrable !

L p— h(,u?’”) now Lipschitz w.r.t. di (and Wasserstein 1-2) weakining of the topology
e Previous (partial) results on smoothing by Banos - CdR - McMurray - Crisan&McMurray



MKV SDE - smoothness of density

e Consider MKV SDE with o > 0, coefficients admit twice bounded continuous flat derivative
+ first and second flat derivatives Hoélder continuous in space

dXt = [)(1:7 Xf,[l.t)dtJrO'(t,Xt,Ht)dBt, Xo € L2
dXEM = b(t, XPOM p M) dt + o (8, XEOM, 1) dBy,  XEH = x e RY

'S S

P(t,/,},; t,x,s, ) = g(f (Ua'*)(r’;(JJ':YM)dr’ T X = f b(r,i,pﬁ"‘)dr> + R(t7 H (S - t))
t t

e MKV SDE admits density p(u, t,s, ) = Jp(t7 wit,x, s, )du(x)(= dut*1)

e Handle circular problem through Picard procedure :
L {((/L?‘u)tgsg T)2}1{>0 through Picard iteration on MKV-SDE initialized at v # p

L (pe)e=o corresponding decoupled flow v~ L-differentiability at step £ + 1 v diff. +
smoothing for flow at step ¢ + 1...

L» Uniform control 4 equicontinuity vw»> converging subsequence through compactness

o p(t,u,s,x,y) and p(t, u,s,y) smooth in all variable + Gaussian type bounds

L, Blow up smoothed by 7/2 for L-derivative



From smoothing to W.P. for non-degenerate MKV - SDE - use of 3 of
density

on[0,T], T>0,

t t

b(s, Xs, j1s)ds + f o(s,Xs, s)dBs, Xo € L2,

&=%+f
0

0
B is a B.M.

e Correct framework seems to be coefficients with bounded and continuous flat derivative
(possibly need of Holder regularity in space and for flat derivative) v»»> no results in that
direction

o |dea : use existence of density and parametrix expansion (order 1)

L, Space = {P € C([s, T], P(RY),P(s) = u, P(t) with density p, TV}

L, Compute [§/dm]|p and show it is bounded

L» Derive Lipschitz in TV v fixed point procedure converges

v Need for Hélder continuity for co* to handle remainder of parametrix expansion !

e Result Under these assumptions 3! weak sol of MKV-SDE
L, Work for bounded drift Lipschitz in TV

L Gives strong 3! asa o Lipschitz in space



Examples

On[0,T], T >0,
t t
Xt = Xo +f b(s, Xs, pis)ds + f o(s, Xs, us)dBs, Xp € L2,
0 0
B is a B.M.

v Weak W.P. for
e M order interaction h(t,x,pn) = §@(t,x,z1,...,zm)du(z1) ... du(zm)

L, ¢ measurable and bounded + 7-Hdlder continuous

e Scalar interaction h(t, x, u) = Scp(t, x,§ordp, ..., SﬂﬁMdN)
L ¢ measurable and bounded, z — ¢(t, x,z) Lipschitz + x — ©(t, x,z) n-Hdlder
L» ; measurable and bounded + 7-Hélder continuous

e Polynomial on Wasserstein space h(t,x, u) = H;N:1 [Scp,-(t,x, z)d/,L(z)]

L» ¢ measurable and bounded + 7-Hdlder continuous

+Lipschitz in space v~ Strong W.P.



MKV SDE - (back to) associated Kolmogorov PDE on P,

on[0,T], T >0,

et ) + [ bt x,) - Gt 1) ()dtx) + 5 [ Tel(00%)(e.x, 1)t ) () () = O

Coefficients are bounded and n-Hélder in space and (twice) flat differentiable with bounded
n-Holder continuous derivative

e Result The backward Kolmogorov equation admits a unique fundamental solution
p(w, s, t, z) which writes

plnrs, t,2) = jp(r, 1y, £, 2)dja(x)

and (first and partial-second) L-derivatives admit Gaussian type bound with blow up at
resp. t—(1+m)/2 and t—1+n/2
e Result Cauchy problem associated with backward Kolmogorov equation admits classical
solution
-
e, ) = o) + sl
t

for any flat differentiable with bounded and Hélder continuous derivative source term and
any bounded with continuous and bounded flat differentiable terminal condition



MKV SDE - (back to) associated PDE on R? x P,

dX: = b(i‘7 Xt,,lLt)dt-'t‘O'(t,Xt,Mt)dBt, Xo €Ly
dXTOM = b(t, XPH ppt)dt + o (t, XPH ppt ) dBe, X = x e RY
Coefficients are bounded and n-Hélder in space and (twice) flat differentiable with bounded

n-Hélder continuous derivative
e Solution (X, 1) is Markov on R? x P»(RY)
L, generator £ acts on RY x Po(RY) v ¥ = [ + L
e Search for dynamic of u(t, Xe, ut) = E[p(X7, u1) (X, pe)]

t, X, t,p

L use decoupled flow u(t, x, u) = E[p(X7", u3")] 4 Markov + It to derive

(0t + Lu(t,x,p) =0, u(T,,)=¢

e Result The Cauchy pb associated with .2 with data (f, ¢) admits a unique classical solution

;
u(t, x, ) = E[o(XPH, u3) +f F(s, XM, pe ) ds)

t
for bounded with bounded flat differentiable terminal condition and bounded and Hélder
with bounded and Hélder flat differentiable source term

L» works for unbounded t.c. and source provided suitable exponential growth in space and
quadratic in p

L, works for source locally Hélder (space + flat derivative)



From PDE to Prop of chaos - path level

Recall that on [0, T], T > 0,
t t
X: = Xo +f b(s, Xs, s)ds + J o(s, Xs, pus)dBs, Xo € L2
0 0

B is a B.M. gives asymptotic (N — +00) dynamic of one particle interacting in mean field

X{:Xé-&-fb(s Tl )ds+f o(s, X0, uMydBE, i=1,...,N, ul = IZ(&/

e Restore propagation of chaos, idea
L, Assume that o is (in addition) Lipschitz in space, Xo admit moment of order g > 4

L Take u sol of (0 + L)u=b, ur =0
L, Compute Zvonkin's transform of X/ and X| = MKV-SDE(X/, B')

v require to control second L-derivative 6i I v»v> need to work with Picard
approximation !

L, Compare path
o Result. Under assumptions for PDE on RY x P»(R9) + Lip. diff. and moment one has

E[sup |X] — X[|?] < N=2/(d¥4  (up to log for d = 4)
t<T



From PDE to Prop of chaos - density level

Recall that on [0, T], T > 0,
t t
X: = Xo +f b(s, Xs, s)ds + j o(s, Xs, pus)dBs, Xo € L2
0 0

B is a B.M. gives asymptotic (N — +00) dynamic of one particle interacting in mean field

x;:x(§+fb(s Tl )ds+f o(s, X0, uMydBE, i=1,...,N, ul = IZ%

e pointwise propagation of chaos, idea
L, pYN : marginal density of the first interacting particle

L, Take p fundamental sol of Kolmogorov PDE and test against "V through Chain rule on
P2
L, Use fact that p is fundamental solution

v~ require to control second L-derivative 6/% I v»vs> need to work with Picard
approximation !

v leads to |(p"Y — p) (1,0, t,2)| < |E[p(ug',0,t,2) — p(,0, t, 2)]| + Remainder

L» Conclusion thanks to regularity on p

e Result. Under assumptions for PDE on P,(R?) one has

1

K
I(p"M=p) (1,0, 1, 2)| < m {Hf glet,z —x)|x glet,z - X)d“(x)}
2t Jrd RY




From PDE to Prop of chaos - semigroup level

Recall that on [0, T], T > 0,
t t
X: = Xo +f b(s, Xs, s)ds + J o(s, Xs, pus)dBs, Xo € L2
0 0

B is a B.M. gives asymptotic (N — +00) dynamic of one particle interacting in mean field

x{:x(§+fb(s Tl )ds+f o(s, X0, uMydBE, i=1,...,N, ul = IZ(&/

e propagation of chaos, idea
L, Take U sol of Kolmogorv PDE and test against /¥ through Chain rule on P,

L, Use fact that U solves Kolmogorov PDE on Wasserstein space

v require to control second L-derivative aﬁ I v»v> need to work with Picard
approximation !

v leads to [(U(t, ul) — U(t, p)| < [E[U(O, uY) — U(0, po]| + Remainder ~ %
L, Conclusion thanks to regularity on U

o Result. Under assumptions for PDE on P»(R?) one has, for all ¢ in ‘zo”an

— @ [e3 C
E[lo(u}) — é(ur)l] < CT =% Wuo, ), [ELs(u})]| - élur)] < CT 1+ =

L, First order expansion through additional assumptions



From PDE to Prop of chaos - semigroup level

Recall that on [0, T], T > 0,
t t
X: = Xo +f b(s, Xs, s)ds + j o(s, Xs, pus)dBs, Xo € L2
0 0

B is a B.M. gives asymptotic (N — +00) dynamic of one particle interacting in mean field

x;:x(§+fb(s Tl )ds+f o(s, X0, uMydBE, i=1,...,N, ul = IZ%

e propagation of chaos, idea
L, Take U sol of Kolmogorv PDE and test against /¥ through Chain rule on P,

L, Use fact that U solves Kolmogorov PDE on Wasserstein space

v require to control second L-derivative aﬁ I v»v> need to work with Picard
approximation !

v leads to [(U(t, ul) — U(t, p)| < [E[U(O, uY) — U(0, po]| + Remainder ~ %
L, Conclusion thanks to regularity on U

o Result. Under assumptions for PDE on P»(R?) one has, for all ¢ in ‘zo”an

(@)

El6() — 6(ur)l] < CT=F Waluuo, i), [ELO(]| — o(ur)] < T3 1

=

L, First order expansion through additional assumptions
L, Works for ¢ = {@dp with ¢ measurable and bounded only!



Thank you'!



