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Anomalous diffusions

Anomalous diffusions are stochastic processes X (t) ∈ Rd that
scale in time with exponent δ 6= 1/2:

E(|X (t)|2) ∼ t2δ for t →∞, δ 6= 1/2

The behavior of superdiffusive processes (δ > 1/2) characterizes
many different natural systems and is mainly connected to motion
in disorder media:

light particle in an optical lattice;

tracer in a turbolent flow;

molecular diffusion in porous media.
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Main features

long ballistic “flights“

short disorder motion

Figura: Typical Lévy flight
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Models for anomalous diffusions

Schlesinger, Klafter[’85]; Zaburdaev, Denisov, Klafter [’15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov [’17]

LÉVY FLIGHTS
Random walk on Rd with jumps length given by a sequence of i.i.d.
α-stable- r.v., with α ∈ (0, 2).

LÉVY WALKS
Stochastic processes (X (t))t∈R+ on Rd obtained by linear
interpolation of Lévy flights (with jumps covered at velocity v0).

Lévy walks give rise to superdiffusive motion with

E(|X (t)|2) ∼
{

t2 if α ∈ (0, 1)
t3−α if α ∈ (1, 2)

for t →∞ (LÉVY SCHEME)

Good behavior but naive models: the lengths of the jumps are
independent =⇒ the medium is renewed after each jump.
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Random walk in a random scenery time

Lévy-Lorentz gas (Barkai, Fleurov,Klafter[’00])

Define the environment ω = {ωk}k∈Z as the renewal P.P. on R

ω0 = 0 , ωk − ωk−1 = ζk (Lévy) Random environment

with (ζk )k∈Z\{0} i.i.d. positive r.v. :

n−1/α(ζ1 + . . .+ ζn)
d−→ Z1 with Z1 α-stable r.v., α ∈ (0, 2).

R

ω =00 ω1 ω2 ω3ω−1ω−2

ζ1 ζ2 ζ3ζ−1ζ−2

Let (ξj)j∈N i.i.d. integer r.v.’s with E(ξ1) = 0 and E(ξ2
1) <∞:

S0 = 0 , Sn =
n∑

j=1

ξj underlying RW on Z
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Discrete and continuous time processes

Discrete time process Y = (Yn)n∈N is the RW on ω coupled to S,

Yn = ωSn ≡ ω ◦ S(n) , position of point labeled by Sn

Continuous time process X = (Xt )t∈R+ is obtained as linear
interpolation of Y :

Let Tn be the length of the walk Y up to jump n,

Tn ≡ Tn(S, ω) =
n∑

k=1

|ωSk − ωSk−1 | , collision times

Set Xt := Yn + sgn(ξn+1)(t − Tn) , for t ∈ [Tn,Tn+1)
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NOTE:

The lengths of the jumps have non trivial correlations.

The transition probabilities of X and Y are now random
themselves.

We will consider:

the quenched law of Xt , denoted Pω, for any fixed
environment ω.

the annealed law of Xt , denoted P, obtained averaging Pω
over the environments.

Goal: Scaling limit of (Yn)n∈N and (Xt )t∈R+ .
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Previous (annealed) results

Annealed second moment E(X 2
t )

(Barkai, Fleurer, Klafter [’00], Burioni, Caniparoli, Vezzani [’10])

E(X 2
t ) ∼


t

2+2α−α2

1+α if α ∈ (0, 1) superdiffusive behavior

t
5
2 −α if α ∈ [1, 3

2 ] superdiffusive behavior
t if α ∈ ( 3

2 , 2) diffusive behavior

Transmission probability P(Xτ0,L = L)
(Beenakker, Groth, Akhmerov [’09,’12])

P(Xτ0,L = L)) ∼
{

L−α log L if α ∈ (0, 1) superdiffusive behavior
L−1 if α ∈ (1, 2) diffusive behavior

Results are not in agreement for α ∈ (1, 2).

Averaged environment and persistent RW
(Artuso, Cristadoro, Onofri, Radice [’18])

Rare events: Big jump principle (Vezzani, Barkai, Burioni [’18])
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Previous (quenched) results

Case α ∈ (1, 2): finite mean, infinite variance
Berger, Rosenthal [’13] show that if µ = E(ζ), then for P-a.e. ω

lim
n→∞

Yn√
n

d
= N(0, µ2) , quenched CLT for Yn

Theorem 1 ( B., Cristadoro, Lenci, Ligabó - JSP ’16).

Let µ = E(ζ). For P-a.e. ω

limt→∞
Xt√

t
d
= N(0, µ) quenched CLT for Xt

−→ convergence of finite-dimensional distributions follows
−→ The annealed CLT then follows trivially

quenched moments convergence of Yn/
√

n to the moments of
N(0, µ2).
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Case α ∈ (1, 2): Proof ideas

1. CLT for Yn :

ωn =
∑n−1

k=0 ζk

=⇒ limn→∞
ωn
n = µ P−a.s.

Yn = ωSn =⇒ Yn√
n

=
ωSn√

n
LLN∼ µSn√

n
CLT
=⇒ N(0, µ2) P−a.s.

2. CLT for Xn :

Let T−1(t) := maxn∈N{Tn ≤ t} (] collisions up to time t)

X (t)√
t

=
X (t)− YT−1(t)√

t
+

YT−1(t)√
T−1(t)

√
T−1(t)

t

By the ergodicity of the process seen from the particle:

Tn

n
−→
n→∞

µ,
T−1(t)

t
−→
t→∞

1/µ, P− a.s
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Case α ∈ (0, 1): infinite mean and variance

From definitions it turns out that

• ω̄(n) =

(
ω[nx]

n
1
α

)
x∈R

w−→ Z α− stable process

• S̄(n) =

(
S[nt]

n
1
2

)
t∈R+

w−→ B invariance principle

Ȳ (n)(t) :=
Y[nt]

n1/2α
= ω̄(

√
n) ◦ S̄(n)(t)

Theorem 2 (B., Lenci, Pène - SPA ’19).

Let α ∈ (0, 1). Then, under P and for all k ∈ N and t1, . . . , tk ∈ R+,

(Ȳ (n)(t1), . . . , Ȳ (n)(tk ))
d−→

n→∞
(Z ◦ B(t1), . . . ,Z ◦ B(tk ))

i.e, the finite-dim. distributions of Ȳ (n) converge to those of Z ◦ B.
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Collision times as Random walks in random scenery

Similarly, we have

X̄ (n)(t) :=
X[nt]

n1/(α+1)
' ω̄(

√
qn) ◦ S̄(qn) ◦ (T̄ (n)(t))−1

Key point: Scaling analysis of collision times (Tn)n∈N

Tn :=
n∑

k=1

|ωSk − ωSk−1 | =
∑

k∈Z\{0}

Nn(k)ζk

where Nn(k)= ]{j ∈ {0, . . . , n} : [k , k + 1] ⊆ [Sj−1,Sj ]}
= number of times Sn jumps over the edge (k , k + 1)

Then (Tn)n∈N can be thought as a RW in a random scenery

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Collision times as Random walks in random scenery

Similarly, we have

X̄ (n)(t) :=
X[nt]

n1/(α+1)
' ω̄(

√
qn) ◦ S̄(qn) ◦ (T̄ (n)(t))−1

Key point: Scaling analysis of collision times (Tn)n∈N

Tn :=
n∑

k=1

|ωSk − ωSk−1 | =
∑

k∈Z\{0}

Nn(k)ζk

where Nn(k)= ]{j ∈ {0, . . . , n} : [k , k + 1] ⊆ [Sj−1,Sj ]}
= number of times Sn jumps over the edge (k , k + 1)

Then (Tn)n∈N can be thought as a RW in a random scenery

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Collision times as Random walks in random scenery

Similarly, we have

X̄ (n)(t) :=
X[nt]

n1/(α+1)
' ω̄(

√
qn) ◦ S̄(qn) ◦ (T̄ (n)(t))−1

Key point: Scaling analysis of collision times (Tn)n∈N

Tn :=
n∑

k=1

|ωSk − ωSk−1 | =
∑

k∈Z\{0}

Nn(k)ζk

where Nn(k)= ]{j ∈ {0, . . . , n} : [k , k + 1] ⊆ [Sj−1,Sj ]}
= number of times Sn jumps over the edge (k , k + 1)

Then (Tn)n∈N can be thought as a RW in a random scenery

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Collision times as Random walks in random scenery

Similarly, we have

X̄ (n)(t) :=
X[nt]

n1/(α+1)
' ω̄(

√
qn) ◦ S̄(qn) ◦ (T̄ (n)(t))−1

Key point: Scaling analysis of collision times (Tn)n∈N

Tn :=
n∑

k=1

|ωSk − ωSk−1 | =
∑

k∈Z\{0}

Nn(k)ζk

where Nn(k)= ]{j ∈ {0, . . . , n} : [k , k + 1] ⊆ [Sj−1,Sj ]}
= number of times Sn jumps over the edge (k , k + 1)

Then (Tn)n∈N can be thought as a RW in a random scenery

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Random walk in random scenery

By [Kesten, Spitzer ’79]

Formally Tn :=
∑n

j=0 ζSj =
∑

k∈Z Nn(k)ζk , n ∈ N
where Nn(k) = ]{j ∈ {0, . . . , n} : Sj = k} are local times of S.
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Convergence of RWRS: Kesten-Spitzer process

Theorem 3 (Kesten, Spitzer ’79).

Let α ∈ (0, 1) . Under P, and taking n→∞, it holds( T[ns]

n
1+α
2α

)
s∈R+

w−→ ∆ in D(R+, J1) ,

where ∆(t) =

∫ +∞

−∞
Lt (x)dZ (x) Kesten-Spitzer process

Where Lt = (Lt (x))x∈R is the local time of the Browniam motion B
and Z an α-stable process on R.
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Convergence of collision times

Assumption on the underlying RW: E(|ξ1|2/α+ε) <∞ .

Proposition 1 (B., Lenci, Pène - SPA ’19).

Let α ∈ (0, 1) . Under P, and taking n→∞, it holds(
T[ns]

n
1+α
2α

)
s∈R+

w−→ ∆ in D(R+, J1) .

Moreover, it holds the following joint convergence

Lemma 4.
Under P, and taking n→∞, it holds(

ω̄(n), S̄(n), T̄ (n)
)

w−→ (Z ,B,∆) in D(R, J1)× (D(R+, J1))2

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Convergence of collision times

Assumption on the underlying RW: E(|ξ1|2/α+ε) <∞ .

Proposition 1 (B., Lenci, Pène - SPA ’19).

Let α ∈ (0, 1) . Under P, and taking n→∞, it holds(
T[ns]

n
1+α
2α

)
s∈R+

w−→ ∆ in D(R+, J1) .

Moreover, it holds the following joint convergence

Lemma 4.
Under P, and taking n→∞, it holds(

ω̄(n), S̄(n), T̄ (n)
)

w−→ (Z ,B,∆) in D(R, J1)× (D(R+, J1))2

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Convergence of the main process X

Theorem 5 (B., Lenci, Pène - SPA ’19).

Let α ∈ (0, 1). Under P, and taking n→∞, the finite-dimensional
distributions of X̄ (n) converge to the corresponding distribution of
Z ◦ B ◦∆−1.

Remarks

For α ∈ (0, 1) then the processes Y and X display
superdiffusive behavior with scaling exponent, resp., 1/2α
and 1/(α + 1).

Results can not be extended to a functional limit theorem w.r.t
to the Skorokhod topology as Z ◦ B and Z ◦ B ◦∆−1 have
discontinuities without one-sided limits.

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Convergence of the main process X

Theorem 5 (B., Lenci, Pène - SPA ’19).

Let α ∈ (0, 1). Under P, and taking n→∞, the finite-dimensional
distributions of X̄ (n) converge to the corresponding distribution of
Z ◦ B ◦∆−1.

Remarks

For α ∈ (0, 1) then the processes Y and X display
superdiffusive behavior with scaling exponent, resp., 1/2α
and 1/(α + 1).

Results can not be extended to a functional limit theorem w.r.t
to the Skorokhod topology as Z ◦ B and Z ◦ B ◦∆−1 have
discontinuities without one-sided limits.

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Convergence of the main process X

Theorem 5 (B., Lenci, Pène - SPA ’19).

Let α ∈ (0, 1). Under P, and taking n→∞, the finite-dimensional
distributions of X̄ (n) converge to the corresponding distribution of
Z ◦ B ◦∆−1.

Remarks

For α ∈ (0, 1) then the processes Y and X display
superdiffusive behavior with scaling exponent, resp., 1/2α
and 1/(α + 1).

Results can not be extended to a functional limit theorem w.r.t
to the Skorokhod topology as Z ◦ B and Z ◦ B ◦∆−1 have
discontinuities without one-sided limits.

Alessandra Bianchi RW in a non-integrable RS time



Motivations RW in RS time Results Proof ideas

Case α ∈ (0, 1): Proof ideas

General method: Weak convergence of Prop. 1 follows by the
classic strategy: Convergence of finite dimensional distributions +
tightness.

Convergence of finite dimensional distributions are based on
characteristic functions.

Key point: (Tn) behaves in the limit as a RWRS, converging to the
Kesten-Spitzer process ∆.
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Characteristic function of Tn

T̄ (n)(s) = 1
n(1+α)/2α

∑
k∈Z\{0}N[ns](k)ζk

φζ(θ) = exp[−c1|θ|α(1− ıc2sgnθ)] (Hyp. ζ ∼ α-stable, )

E[exp(ıθT̄ (n)(s))
∣∣S ] =

∏
k∈Z\{0}

φζ

(
θ
N[ns](k)

n(1+α)/2α

)

= exp

−c1|θ|α(1− ıc2sgnθ)
∑

k∈Z\{0}

(
N[ns](k)

)α
n(1+α)/2


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On the other hand

E[exp(ıθ∆(s))] = E
[

exp

(
−c1(1− ıc2sgnθ)|θ|α

∫
R

(Ls(x))αdx
)]

and one has to show∑
k∈Z\{0}

(
N[ns](k)

)α
n(1+α)/2

d−→
∫
R

(Ls(x))αdx

∑
k∈Z\{0} E [|Nn(k)− E[|ξ|]Nn(k)|α] = o(n(1+α)/2)

results and strategy implemented in [Kesten Spitzer, ’79]
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Conclusions
We represent the Lévy Lorentz gas as a RW in a random
scenery time, and show convergence of the collision times to
Kesten Spitzer process.

For α ∈ (1, 2) (integrable environment) we prove in [BCLL’16]
quenched CLT for discrete and continuous time process.
=⇒ quenched diffusive behavior.

For α ∈ (0, 1) (non-integrable environment) we establish in
[BLP’19] a functional limit theorem for discrete and continuous
time.
=⇒ annealed superdiffusive behavior.
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Open problems

Annealed moments

comparison with previous estimates and simulations;
comparison with persistent RW on averaged environment.
Artuso, Cristadoro, Onofri, Radice [’18]

Quenched functional convergence for α ∈ (0, 1), and Moment
assumption over the underlying RW in 1D.

What happens in dimension D ≥ 2?

definition of a 2 D-Lévy environment;
comparison with 2D and 3D- models on Lévy-like
environments. Buonsante, Burioni, Vezzani [’11]
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Thank you for your attention!
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