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Anomalous diffusions

Anomalous diffusions are stochastic processes X(t) € RY that
scale in time with exponent § # 1/2:

E(|X(t)[2) ~ 2 fort—oco, §#1/2

The behavior of superdiffusive processes (§ > 1/2) characterizes
many different natural systems and is mainly connected to motion
in disorder media:

@ light particle in an optical lattice;
@ tracer in a turbolent flow;
@ molecular diffusion in porous media.
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Main features
@ long ballistic “flights*”
@ short disorder motion

Figura: Typical Lévy flight
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Models for anomalous diffusions

Schlesinger, Klafter['85]; Zaburdaev, Denisov, Klafter ['15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov ['17]

LEVY FLIGHTS
Random walk on RY with jumps length given by a sequence of i.i.d.
a-stable- r.v., with a € (0, 2).
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LEVY FLIGHTS
Random walk on RY with jumps length given by a sequence of i.i.d.
a-stable- r.v., with a € (0, 2).

LEVY WALKS
Stochastic processes (X(t)):cr+ on RY obtained by linear
interpolation of Lévy flights (with jumps covered at velocity vp).

Lévy walks give rise to superdiffusive motion with
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Models for anomalous diffusions

Schlesinger, Klafter['85]; Zaburdaev, Denisov, Klafter ['15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov ['17]

LEVY FLIGHTS
Random walk on RY with jumps length given by a sequence of i.i.d.
a-stable- r.v., with a € (0, 2).

LEVY WALKS
Stochastic processes (X(t)):cr+ on RY obtained by linear
interpolation of Lévy flights (with jumps covered at velocity vp).

Lévy walks give rise to superdiffusive motion with

) fort - oo (LEVY SCHEME)

2 ifac (0,1
1,2)

BIXOE) ~ { foe o ey

Good behavior but naive models: the lengths of the jumps are
independent = the medium is renewed after each_jump.
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Random walk in a random scenery time

Lévy-Lorentz gas (Barkai, Fleurov,Klafter['00])
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Random walk in a random scenery time

Lévy-Lorentz gas (Barkai, Fleurov,Klafter['00])
@ Define the environment w = {w }«ez as the renewal P.P. on R

wo =0, wkx—wk—1="Ck (Lévy) Random environment

with (Ck)kez\ oy i-1-d. positive r.v. :
V(¢ 4+ ) -9, Z, with Z; a-stable r.v., o € (0,2).

W wi w=0 W W Uy

&) -1 G G G R
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Random walk in a random scenery time

Lévy-Lorentz gas (Barkai, Fleurov,Klafter['00])
@ Define the environment w = {w }«ez as the renewal P.P. on R

wo =0, wkx—wk—1="Ck (Lévy) Random environment

with (Ck)kez\ oy i-1-d. positive r.v. :
V(¢ 4+ ) -9, Z, with Z; a-stable r.v., o € (0,2).

W wi w=0 W W Uy

&) -1 G G G R
@ Let (§)jen ii.d. integer r.vs with E(&1) = 0 and E(£%) < oc:

n
So=0, S,=)» ¢  underlying RWonZ
j=1
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Discrete and continuous time processes

Discrete time process Y = (Y;)nen is the RW on w coupled to S,

Yn =ws, =wo S(n), position of point labeled by S,
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Discrete and continuous time processes

Discrete time process Y = (Y;)nen is the RW on w coupled to S,

Yn =ws, =wo S(n), position of point labeled by S,

Continuous time process X = (X;);cr+ is obtained as linear
interpolation of Y:
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Discrete and continuous time processes

Discrete time process Y = (Y;)nen is the RW on w coupled to S,

Yn =ws, =wo S(n), position of point labeled by S,

Continuous time process X = (X;);cr+ is obtained as linear
interpolation of Y:
@ Let T, be the length of the walk Y up to jump n,
n
Th=Th(S,w) = Z lws, —ws,_,|, collision times
k=1
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Discrete time process Y = (Y;)nen is the RW on w coupled to S,

Yn =ws, =wo S(n), position of point labeled by S,

Continuous time process X = (X;);cr+ is obtained as linear
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NOTE:
@ The lengths of the jumps have non trivial correlations.

@ The transition probabilities of X and Y are now random
themselves.
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NOTE:
@ The lengths of the jumps have non trivial correlations.

@ The transition probabilities of X and Y are now random
themselves.

We will consider:

@ the quenched law of X;, denoted P, for any fixed
environment w.

@ the annealed law of X;, denoted P, obtained averaging P,
over the environments.
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NOTE:
@ The lengths of the jumps have non trivial correlations.

@ The transition probabilities of X and Y are now random
themselves.

We will consider:

@ the quenched law of X;, denoted P, for any fixed
environment w.

@ the annealed law of X;, denoted P, obtained averaging P,
over the environments.

Goal: Scaling limit of (Y;)nen and (Xi)ier+ -
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Previous (annealed) results

@ Annealed second moment E(X?)
(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

2

24+2a— o
) t TFa if « € (0,1)  superdiffusive behavior
E(X)~q t3—e ifae[1,3]  superdiffusive behavior
t ifa e (3,2) diffusive behavior
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2+2a—a?
) t TFa if « € (0,1)  superdiffusive behavior
E(X)~q t3—e ifae[1,3]  superdiffusive behavior
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@ Transmission probability P(X,, = L)
(Beenakker, Groth, Akhmerov ['09,12])

P(Xr,, = L)) L=%logL ifa € (0,1) superdiffusive behavior
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Previous (annealed) results

@ Annealed second moment E(X?)
(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

2+2a—a?
) t TFa if « € (0,1)  superdiffusive behavior
E(X)~q t3—e ifae[1,3]  superdiffusive behavior
ifa e (3,2) diffusive behavior

@ Transmission probability P(X,, = L)
(Beenakker, Groth, Akhmerov ['09,12])

P(Xr,, = L)) L=%logL ifa € (0,1) superdiffusive behavior
To.L T L1 if « € (1,2)  diffusive behavior

Results are not in agreement for o € (1, 2).
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Previous (annealed) results

@ Annealed second moment E(X?)
(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

2+2a—a?
t TFa if « € (0,1)  superdiffusive behavior
E()(?) ~ 5_ 4 ) 3 e .
t t2 ifac[1,5]  superdiffusive behavior

ifa e (3,2) diffusive behavior

@ Transmission probability P(X,, = L)
(Beenakker, Groth, Akhmerov ['09,12])

P(Xr,, = L)) L=%logL ifa € (0,1) superdiffusive behavior
To.L T L1 if « € (1,2)  diffusive behavior

Results are not in agreement for o € (1, 2).

@ Averaged environment and persistent RW
(Artuso, Cristadoro, Onofri, Radice ['18])
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Previous (annealed) results

@ Annealed second moment E(X?)
(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

2+2a—a?
t TFa if « € (0,1)  superdiffusive behavior
E()(?) ~ 5_ 4 ) 3 e .
t t2 ifac[1,5]  superdiffusive behavior

ifa e (3,2) diffusive behavior

@ Transmission probability P(X,, = L)
(Beenakker, Groth, Akhmerov ['09,12])

. L=%logL ifa € (0,1) superdiffusive behavior
P(Xro, = 1)) ~ { L1 if « € (1,2)  diffusive behavior
Results are not in agreement for o € (1, 2).

@ Averaged environment and persistent RW
(Artuso, Cristadoro, Onofri, Radice ['18])

@ Rare events: Big jump principle (Vezzani, Barkai, Burioni ['18])
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Previous (quenched) results

Case a € (1, 2): finite mean, infinite variance
@ Berger, Rosenthal ['13] show that if 1 = E(), then for P-a.e. w

nI|_>n;O 7 = N(O ©?), quenched CLT for Y,
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Previous (quenched) results

Case a € (1, 2): finite mean, infinite variance
@ Berger, Rosenthal ['13] show that if 1 = E(), then for P-a.e. w

Y,
lim —2 £ N(0,2), quenched CLT for Y,

n—o0o /N

Theorem 1 ( B., Cristadoro, Lenci, Ligabo - JSP ’16).

Let ;n = E(C). For P-a.e. w
® lim oo % £ N(0, ) quenched CLT for X;
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Let ;n = E(C). For P-a.e. w
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— convergence of finite-dimensional distributions follows
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Previous (quenched) results

Case a € (1, 2): finite mean, infinite variance
@ Berger, Rosenthal ['13] show that if 1 = E(), then for P-a.e. w

Y,
lim —2 £ N(0,2), quenched CLT for Y,

n—o0o /N

Theorem 1 ( B., Cristadoro, Lenci, Ligabo - JSP ’16).

Let ;n = E(C). For P-a.e. w

® lim oo % £ N(0, ) quenched CLT for X;
— convergence of finite-dimensional distributions follows
— The annealed CLT then follows trivially

@ quenched moments convergence of Y,/+/n to the moments of
N(0, 1i?).
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Case a € (1,2): Proof ideas

1. CLT for Y;, :

° wn =170 ¢
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Case a € (1,2): Proof ideas

1. CLT for Y;, :
@ wp = Z;é Gk = limp_so w—n” =u P-as.
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Case a € (1,2): Proof ideas

1. CLT for Y;, :
@ wp = Z;é Gk = limp_so w—n” =u P-as.
o Y,= ws,
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Case a € (1,2): Proof ideas

1. CLT for Y;, :
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Case a € (1,2): Proof ideas

1. CLT for Y;, :
@ wp = Z;é Gk = limp_so w—n” =u P-as.

] Yn =ws, — % = oj;g L"LVN /.i}:;;, C:”; N(O,'U,g) P-as.

2. CLT for X, :
@ Let T7'(t) := maxyen{ T,y < t} (4 collisions up to time ¢)
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Case a € (1,2): Proof ideas

1. CLT for Y, :

@ wp= ZZ;;I) <k — ||mn—>oo w—; =u P_a.S.

o Vo=ws, = =R eR N0 Poas
2. CLT for X, :

@ Let T7'(t) := maxyen{ T,y < t} (4 collisions up to time ¢)

XWO) =Y Yrow [T

X(t) _ N
Vit Vi T-1(t) t

Alessandra Bianchi RW in a non-integrable RS time



Results
[e] lelelelele]e]

Case a € (1,2): Proof ideas

1. CLT for Y;, :
@ wp = Z;é Gk = limp_so w—n” =u P-as.
LLN oL
° Yp=ws, = = 2TE3 2S5 N(0,uP)
2. CLT for X, :
@ Let T7'(t) := maxyen{ T,y < t} (4 collisions up to time ¢)

Xk _Xt_ _YT
vt Vi \/ V

@ By the ergodicity of the process seen from the particle:

P—a.s.

o (1)

n n—oo '’ t t—oo

1//’L7 P—as
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Case a € (0, 1): infinite mean and variance

From definitions it turns out that

w
o oM — ( [':X]> LN « — stable process
xeR
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Case a € (0, 1): infinite mean and variance

From definitions it turns out that

o oM — (w[':’(]> LN « — stable process
Na / xeR
_ S
o SN — ([r:t]) . B invariance principle
nz / ter+
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Case a € (0, 1): infinite mean and variance

From definitions it turns out that

o oM = (w[':’(]> .z o — stable process
Ne /J xeR
_ S
o 5= ( ['1”]) B invariance principle
nz / ter+
_ You o _
(M (¢) = n1[/r72]w — oM 6 30 (p)
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Case a € (0, 1): infinite mean and variance

From definitions it turns out that

o oM — (w[':’(]> LN « — stable process
Na / xeR
_ S
o 3(M_ ( [’1”]) B invariance principle
nz / ter+
_ Yint - z
(1) = <0 = &/ 0 5Oy

Theorem 2 (B., Lenci, Péne - SPA ’19).

Leta € (0,1). Then, under® and forallk € Nandty,... t € RT,

(YOUt), ..., YO t)) L5 (Z 0 B(ty),. .., Z o B(t))

n—o0

i.e, the finite-dim. distributions of Y") converge to those of Z o B.
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Collision times as Random walks in random scenery

Similarly, we have
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Collision times as Random walks in random scenery

Similarly, we have

Key point: Scaling analysis of collision times (Tp)nen
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Collision times as Random walks in random scenery

Similarly, we have

Key point: Scaling analysis of collision times (Tp)nen

n

Tn = Z|WSK —WS;H‘ = Z Nﬂ(k)gk

k=1 keZ\{0}
where N(k)=t{j € {0,...,n} : [k,k+1] C [Sj—1, S]]}
= number of times S, jumps over the edge (k, k + 1)
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Collision times as Random walks in random scenery

Similarly, we have

Key point: Scaling analysis of collision times (Tp)nen

n

Tn = Z|WSK —WS;H‘ = Z Nn(k)gk

k=1 keZ\{0}
where N(k)=t{j € {0,...,n} : [k,k+1] C [Sj—1, S]]}
= number of times S, jumps over the edge (k, k + 1)

Then (T,)nen can be thought as a RW in a random scenery
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Random walk in random scenery

By [Kesten, Spitzer '79]

2 _ ~—7 ¥/4
- v
° SD:O 315’] 31:-1 53_—0
. TG TG, T.=Grld, TR

Formally 7, := Z ~0 CS/ > kez Nn(K)Ck ,neN
where Nj(k) = 4{j € {0,...,n} : S; = k} are local times of S.
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“C‘onvergence of RWRS: Kesten-Spitzer process

Theorem 3 (Kesten, Spitzer °79).

Leta € (0,1) . UnderP, and taking n — oo, it holds

1+a

-
( [”S]> Yy A inD(RT,H),
nza / seRt

+0oo
where  A(t) = / Li(x)dZ(x)  Kesten-Spitzer process

— 00

Where L; = (L¢(x))xer is the local time of the Browniam motion B
and Z an a-stable process on R.
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Convergence of collision times

Assumption on the underlying RW: E(|&]%/*¢) < o0 .

Proposition 1 (B., Lenci, Péne - SPA ’19).

Leta € (0,1) . Under P, and taking n — oo, it holds

.
( [”5]> YA inD(RY, ).
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Convergence of collision times

Assumption on the underlying RW: E(|&]%/*¢) < o0 .

Proposition 1 (B., Lenci, Péne - SPA ’19).

Leta € (0,1) . Under P, and taking n — oo, it holds

.
( [”5]> YA inD(RY, ).
SER+

Moreover, it holds the following joint convergence

Under P, and taking n — oo, it holds

(@W, 5, 7<n)) 5 (Z,B,A) inD(R,Jr) x (D(RT, J))?
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Convergence of the main process X

Theorem 5 (B., Lenci, Péne - SPA "19).

Leta € (0,1). Under P, and taking n — oo, the finite-dimensional
distributions of X\") converge to the corresponding distribution of
ZoBoA™T,
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Convergence of the main process X

Theorem 5 (B., Lenci, Péne - SPA "19).

Leta € (0,1). Under P, and taking n — oo, the finite-dimensional
distributions of X\") converge to the corresponding distribution of
ZoBoA™T,

Remarks

@ For « € (0, 1) then the processes Y and X display
superdiffusive behavior with scaling exponent, resp., 1/2«
and 1/(a+1).
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Convergence of the main process X

Theorem 5 (B., Lenci, Péne - SPA "19).

Leta € (0,1). Under P, and taking n — oo, the finite-dimensional
distributions of X\") converge to the corresponding distribution of
ZoBoA™T,

Remarks

@ For « € (0, 1) then the processes Y and X display
superdiffusive behavior with scaling exponent, resp., 1/2«
and 1/(a+1).

@ Results can not be extended to a functional limit theorem w.r.t
to the Skorokhod topology as Z o Band Z o Bo A~ have
discontinuities without one-sided limits.
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Proof ideas
[ Jelelelele]

Case a € (0, 1): Proof ideas

General method: Weak convergence of Prop. 1 follows by the
classic strategy: Convergence of finite dimensional distributions +
tightness.
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[ Jelelelele]

Case a € (0, 1): Proof ideas

General method: Weak convergence of Prop. 1 follows by the
classic strategy: Convergence of finite dimensional distributions +
tightness.

Convergence of finite dimensional distributions are based on
characteristic functions.
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Proof ideas
[ Jelelelele]

Case a € (0, 1): Proof ideas

General method: Weak convergence of Prop. 1 follows by the
classic strategy: Convergence of finite dimensional distributions +
tightness.

Convergence of finite dimensional distributions are based on
characteristic functions.

Key point: (7,,) behaves in the limit as a RWRS, converging to the
Kesten-Spitzer process A.
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Characteristic function of T,

0 TU)(s) = —rrkyms Ykez o) Nins) (K)Ck
@ ¢¢(0) = exp[—c1]0|*(1 —weosgnf)]  (Hyp. ¢ ~ «a-stable, )
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Proof ideas
[e] lelelele]

Characteristic function of T,

0 TU)(s) = —rrkyms Ykez o) Nins) (K)Ck
@ ¢¢(0) = exp[—c1]0|*(1 —weosgnf)]  (Hyp. ¢ ~ «a-stable, )

Nns
Elexp(:0 T !S] H b¢ ( 1[+o]z§/2)a>

kez\{0}

N k (6]
= exp (C19a(1 — 1C28gnd) Z W)

keZ\{0}
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On the other hand
Elexp(10A(s))] = E [exp (—01(1 - zczsgn9)19|a/1é(Ls(x))”dx)]

and one has to show

(Mg (K))* o
> n£1+]a)/2 i>/R(LS(X)) ax

keZ\{0}
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On the other hand
Elexp(10A(s))] = E [exp (—01(1 - zczsgn9)19|a/1é(Ls(x))”dx)]

and one has to show

(Mg (K))* o
> n£1+]a)/2 i>/R(LS(X)) ax

keZ\{0}

® > ez (o) EINA(K) — E[[¢[INa(K)|?] = o(n(1T=)/2)
@ results and strategy implemented in [Kesten Spitzer, '79]
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Conclusions

@ We represent the Lévy Lorentz gas as a RW in a random
scenery time, and show convergence of the collision times to
Kesten Spitzer process.
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@ We represent the Lévy Lorentz gas as a RW in a random
scenery time, and show convergence of the collision times to
Kesten Spitzer process.

@ For a € (1,2) (integrable environment) we prove in [BCLL16]
quenched CLT for discrete and continuous time process.
= quenched diffusive behavior.
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Conclusions

@ We represent the Lévy Lorentz gas as a RW in a random
scenery time, and show convergence of the collision times to
Kesten Spitzer process.

@ For a € (1,2) (integrable environment) we prove in [BCLL16]
quenched CLT for discrete and continuous time process.
= quenched diffusive behavior.

@ For a € (0,1) (non-integrable environment) we establish in
[BLP’19] a functional limit theorem for discrete and continuous
time.

—> annealed superdiffusive behavior.
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Open problems
@ Annealed moments

e comparison with previous estimates and simulations;
e comparison with persistent RW on averaged environment.
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e comparison with persistent RW on averaged environment.

@ Quenched functional convergence for « € (0, 1), and Moment
assumption over the underlying RW in 1D.
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Open problems
@ Annealed moments

e comparison with previous estimates and simulations;
e comparison with persistent RW on averaged environment.

@ Quenched functional convergence for « € (0, 1), and Moment
assumption over the underlying RW in 1D.

@ What happens in dimension D > 27

e definition of a 2 D-Lévy environment;
e comparison with 2D and 3D- models on Lévy-like
environments.
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