Random walk in a non-integrable random scenery time

Alessandra Bianchi

joint work with Marco Lenci & Françoise Pène

2-5 July 2019 Jean Monnet University - Sant'Etienne

Nonlinear Processes and their Applications

Outline

Results

Proof ideas

Alessandra Bianchi RW in a non-integrable RS time

イロト イボト イヨト

Э

Anomalous diffusions are stochastic processes $X(t) \in \mathbb{R}^d$ that scale in time with exponent $\delta \neq 1/2$:

 $\mathbb{E}(|X(t)|^2) \sim t^{2\delta}$ for $t \to \infty$, $\delta \neq 1/2$

The behavior of superdiffusive processes ($\delta > 1/2$) characterizes many different natural systems and is mainly connected to motion in disorder media:

- light particle in an optical lattice;
- tracer in a turbolent flow;
- molecular diffusion in porous media.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Motivations	RW in RS time	Results	Proof ideas
000	000000000	0000000	000000

Main features

- Iong ballistic "flights"
- short disorder motion

Figura: Typical Lévy flight

Proof ideas

Models for anomalous diffusions

Schlesinger, Klafter['85]; Zaburdaev, Denisov, Klafter ['15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Proof ideas

Schlesinger, Klafter['85]; Zaburdaev, Denisov, Klafter ['15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$.

LÉVY WALKS

Stochastic processes $(X(t))_{t \in \mathbb{R}^+}$ on \mathbb{R}^d obtained by linear interpolation of Lévy flights (with jumps covered at velocity v_0).

Proof ideas

Models for anomalous diffusions

Schlesinger, Klafter ['85]; Zaburdaev, Denisov, Klafter ['15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$.

LÉVY WALKS

Stochastic processes $(X(t))_{t \in \mathbb{R}^+}$ on \mathbb{R}^d obtained by linear interpolation of Lévy flights (with jumps covered at velocity v_0).

Lévy walks give rise to superdiffusive motion with

$$\mathbb{E}(|X(t)|^2) \sim \begin{cases} t^2 & \text{if } \alpha \in (0,1) \\ t^{3-\alpha} & \text{if } \alpha \in (1,2) \end{cases} \quad \text{for } t \to \infty \quad (\mathsf{L\acute{EVY SCHEME}})$$

Proof ideas

Models for anomalous diffusions

Schlesinger, Klafter ['85]; Zaburdaev, Denisov, Klafter ['15]; Dybiec, Gudowska-Nowak, Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$.

LÉVY WALKS

Stochastic processes $(X(t))_{t \in \mathbb{R}^+}$ on \mathbb{R}^d obtained by linear interpolation of Lévy flights (with jumps covered at velocity v_0).

Lévy walks give rise to superdiffusive motion with

$$\mathbb{E}(|X(t)|^2) \sim \begin{cases} t^2 & \text{if } \alpha \in (0,1) \\ t^{3-\alpha} & \text{if } \alpha \in (1,2) \end{cases} \quad \text{for } t \to \infty \quad (L\text{ÉVY SCHEME})$$

Good behavior but **naive models**: the lengths of the jumps are independent \implies the medium is renewed after each jump.

Lévy-Lorentz gas (Barkai, Fleurov, Klafter['00])

・ロト ・部ト ・ヨト・ヨト

3

Lévy-Lorentz gas (Barkai, Fleurov, Klafter['00])

• Define the environment $\omega = \{\omega_k\}_{k \in \mathbb{Z}}$ as the renewal P.P. on \mathbb{R}

 $\omega_0 = 0$, $\omega_k - \omega_{k-1} = \zeta_k$ (Lévy) Random environment

with $(\zeta_k)_{k\in\mathbb{Z}\setminus\{0\}}$ i.i.d. positive r.v. : $n^{-1/\alpha}(\zeta_1 + \ldots + \zeta_n) \xrightarrow{d} Z_1$ with $Z_1 \alpha$ -stable r.v., $\alpha \in (0, 2)$.

イロト イボト イモト イモト 二日

Lévy-Lorentz gas (Barkai, Fleurov, Klafter['00])

• Define the environment $\omega = \{\omega_k\}_{k \in \mathbb{Z}}$ as the renewal P.P. on \mathbb{R}

 $\omega_0 = 0$, $\omega_k - \omega_{k-1} = \zeta_k$ (Lévy) Random environment

with $(\zeta_k)_{k\in\mathbb{Z}\setminus\{0\}}$ i.i.d. positive r.v. : $n^{-1/\alpha}(\zeta_1 + \ldots + \zeta_n) \xrightarrow{d} Z_1$ with $Z_1 \alpha$ -stable r.v., $\alpha \in (0, 2)$.

• Let $(\xi_j)_{j\in\mathbb{N}}$ i.i.d. integer r.v.'s with $\mathbb{E}(\xi_1) = 0$ and $\mathbb{E}(\xi_1^2) < \infty$:

$$S_0 = 0$$
, $S_n = \sum_{j=1}^n \xi_j$ underlying RW on $\mathbb Z$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

 $Y_n = \omega_{S_n} \equiv \omega \circ S(n)$, position of point labeled by S_n

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

 $Y_n = \omega_{S_n} \equiv \omega \circ S(n)$, position of point labeled by S_n

Continuous time process $X = (X_t)_{t \in \mathbb{R}^+}$ is obtained as linear interpolation of *Y*:

・ロト ・御 ト ・ ヨト ・ ヨト

 $Y_n = \omega_{S_n} \equiv \omega \circ S(n)$, position of point labeled by S_n

Continuous time process $X = (X_t)_{t \in \mathbb{R}^+}$ is obtained as linear interpolation of *Y*:

• Let T_n be the length of the walk Y up to jump n,

 $T_n \equiv T_n(S,\omega) = \sum_{k=1}^n |\omega_{S_k} - \omega_{S_{k-1}}|,$ collision times

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

 $Y_n = \omega_{S_n} \equiv \omega \circ S(n)$, position of point labeled by S_n

Continuous time process $X = (X_t)_{t \in \mathbb{R}^+}$ is obtained as linear interpolation of *Y*:

• Let T_n be the length of the walk Y up to jump n,

 $T_n \equiv T_n(S,\omega) = \sum_{k=1}^n |\omega_{S_k} - \omega_{S_{k-1}}|,$ collision times

• Set $X_t := Y_n + \operatorname{sgn}(\xi_{n+1})(t - T_n)$, for $t \in [T_n, T_{n+1})$

・ロト ・ 日下 ・ 日下 ・ 日下 ・

≣ • • • • •

Motivations		RW in RS time ○○○●○○○○○○		Results ooooooc	Results 0000000	
	S —		-2 -1 0	1 2 3	 Z	
	Y ····	ω_2 • • • •	ω_{-1} $\omega_0 =$ $\cdot \circ \cdot \circ$ Y_0	0 ω ₁	ω ₂ ω ₃ • • • • • • • • • • • • • • • • • • •	
	X	ω_2 • • • • •	$\omega_{-1} \omega_{0} =$	0 ω _l • • • • • • # # # #	ω ₂ ω ₃	

Motivations 000		RW in 0000	RS time ●00000		Result: 0000	s 0000		Proof idea
	S	 · · · ·	-2 -1	0 1	2 3 S ₁	·······	→ Z	
	Y •	ω_2 • · · · · · ·	ω_1 • • • •	ω ₀ =0	ω <u>ι</u>	ω ₂ ω • • • • Υ ₁	3 ★ R	
	X	ω_2 ・ ○ • • •	ω_1	ω ₀ =0	ω	ω ₂ ω • • • • • • •	^B →→→ R	

Motivations		RW in 0000	RS time o●oooo		Results	; 2000		Proof idea
	S		-2 -1	0 1	2 3	••••	· · ·	
					S ₁		Z	
	Y	ω_2 • ⊖ • • •	ω_1 → ⊖ •	ω ₀ =0 ↔	ω <u>i</u>		ω₃ > • - • R	
	X	ω_2 ・ ○ ・ ・	ω_1	ω ₀ =0	ω <u>ι</u>	ω ₂	ω₃ ⊖ • → Γ.) R	

Alessandra Bianchi RW in a non-integrable RS time

三 のへで

Motivations 000		RW in 0000	RS time oo●ooo		Results	s 0000		Proof idea 000000
	S	• • •	-2 -1	0 1	2 3	······		
	Y	ω_2 • • • •	ω_1 -• - • •	ω ₀ =0	ω _l	ω_2	ω₃ → → R	
	X	ω_2 • ⊖ • • •	ω_1 •••••••	ω ₀ =0	ω ₁	ω <u>ν</u>	₩3 → → → ₽	
				У	$X(T_2)$		n	

Motivations 000		RW in 0000	RS time 0000●00		Result 0000	s 0000	Proof idea oooooo
	S 		-2 -1 S ₃	0 1	2 3	······	Z
	Y	ω_2 → ⊖ • • •	ω_1 • • • • • • •	ω ₀ =0	ω _ι	ω₂ ω₃ - • • • • • •	 R
	X	ω_2 • • • • • •	ω_1 • • • • • • • • • • • • • • • • • • •	ω ₀ =0	ω <u>ι</u> 	ω₂ ω₃ → ⊖ • ⊖ •	 R

Motivations	RW in RS time	Results	Proof ideas
	000000000		

NOTE:

- The lengths of the jumps have non trivial correlations.
- The transition probabilities of *X* and *Y* are now random themselves.

イロト イヨト イヨト イヨト

э

NOTE:

- The lengths of the jumps have non trivial correlations.
- The transition probabilities of *X* and *Y* are now random themselves.

We will consider:

- the quenched law of X_t, denoted P_ω, for any fixed environment ω.
- the annealed law of X_t, denoted P, obtained averaging P_ω over the environments.

NOTE:

- The lengths of the jumps have non trivial correlations.
- The transition probabilities of *X* and *Y* are now random themselves.

We will consider:

- the quenched law of X_t, denoted P_ω, for any fixed environment ω.
- the annealed law of X_t, denoted ℙ, obtained averaging P_ω over the environments.

Goal: Scaling limit of $(Y_n)_{n \in \mathbb{N}}$ and $(X_t)_{t \in \mathbb{R}^+}$.

Results

Proof ideas

• Annealed second moment $\mathbb{E}(X_t^2)$

(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{superdiffusive behavior} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{superdiffusive behavior} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{diffusive behavior} \end{cases}$$

Results

Proof ideas

• Annealed second moment $\mathbb{E}(X_t^2)$

(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{superdiffusive behavior} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{superdiffusive behavior} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{diffusive behavior} \end{cases}$$

 Transmission probability P(X_{τ₀,L} = L) (Beenakker, Groth, Akhmerov ['09,'12])

$$\mathbb{P}(X_{\tau_{0,L}} = L)) \sim \begin{cases} L^{-\alpha} \log L & \text{if } \alpha \in (0,1) \\ L^{-1} & \text{if } \alpha \in (1,2) \end{cases} \text{ superdiffusive behavior}$$

Results

Proof ideas

• Annealed second moment $\mathbb{E}(X_t^2)$

(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{superdiffusive behavior} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{superdiffusive behavior} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{diffusive behavior} \end{cases}$$

 Transmission probability P(X_{τ₀,L} = L) (Beenakker, Groth, Akhmerov ['09,'12])

$$\mathbb{P}(X_{\tau_{0,L}} = L)) \sim \begin{cases} L^{-\alpha} \log L & \text{if } \alpha \in (0,1) \\ L^{-1} & \text{if } \alpha \in (1,2) \end{cases} \text{ superdiffusive behavior}$$

Results are not in agreement for $\alpha \in (1, 2)$.

Results

Proof ideas

• Annealed second moment $\mathbb{E}(X_t^2)$

(Barkai, Fleurer, Klafter ['00], Burioni, Caniparoli, Vezzani ['10])

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{superdiffusive behavior} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{superdiffusive behavior} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{diffusive behavior} \end{cases}$$

 Transmission probability P(X_{τ0,L} = L) (Beenakker, Groth, Akhmerov ['09,'12])

$$\mathbb{P}(X_{\tau_{0,L}} = L)) \sim \begin{cases} L^{-\alpha} \log L & \text{if } \alpha \in (0,1) \\ L^{-1} & \text{if } \alpha \in (1,2) \\ \end{cases} \text{ superdiffusive behavior}$$

Results are not in agreement for $\alpha \in (1, 2)$.

 Averaged environment and persistent RW (Artuso, Cristadoro, Onofri, Radice ['18])

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{superdiffusive behavior} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{superdiffusive behavior} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{diffusive behavior} \end{cases}$$

Results

Proof ideas

 Transmission probability P(X_{τ₀,L} = L) (Beenakker, Groth, Akhmerov ['09,'12])

$$\mathbb{P}(X_{\tau_{0,L}} = L)) \sim \begin{cases} L^{-\alpha} \log L & \text{if } \alpha \in (0,1) \\ L^{-1} & \text{if } \alpha \in (1,2) \end{cases} \text{ superdiffusive behavior}$$

Results are not in agreement for $\alpha \in (1, 2)$.

- Averaged environment and persistent RW (Artuso, Cristadoro, Onofri, Radice ['18])
- Rare events: Big jump principle (Vezzani, Barkai, Burioni ['18])

Motivations

Results

Proof ideas

Case $\alpha \in (1, 2)$: finite mean, infinite variance

• Berger, Rosenthal ['13] show that if $\mu = \mathbb{E}(\zeta)$, then for *P*-a.e. ω

$$\lim_{n \to \infty} \frac{Y_n}{\sqrt{n}} \stackrel{d}{=} N(0, \mu^2), \quad \text{quenched CLT for } Y_n$$

Motivations

Case $\alpha \in (1, 2)$: finite mean, infinite variance

RW in **RS** time

• Berger, Rosenthal ['13] show that if $\mu = \mathbb{E}(\zeta)$, then for *P*-a.e. ω

$$\lim_{n \to \infty} \frac{Y_n}{\sqrt{n}} \stackrel{d}{=} N(0, \mu^2), \quad \text{quenched CLT for } Y_n$$

Results

Proof ideas

Theorem 1 (B., Cristadoro, Lenci, Ligabó - JSP '16).

Let
$$\mu = \mathbb{E}(\zeta)$$
. For P-a.e. ω

•
$$\lim_{t\to\infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0,\mu)$$
 quenched CLT for X_t

Motivations

Case $\alpha \in (1, 2)$: finite mean, infinite variance

RW in RS time

• Berger, Rosenthal ['13] show that if $\mu = \mathbb{E}(\zeta)$, then for *P*-a.e. ω

$$\lim_{n \to \infty} \frac{Y_n}{\sqrt{n}} \stackrel{d}{=} N(0, \mu^2), \quad \text{quenched CLT for } Y_n$$

Results

Proof ideas

Theorem 1 (B., Cristadoro, Lenci, Ligabó - JSP '16).

Let $\mu = \mathbb{E}(\zeta)$. For P-a.e. ω

• $\lim_{t\to\infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0,\mu)$ quenched CLT for X_t

 \longrightarrow convergence of finite-dimensional distributions follows

Motivations

Case $\alpha \in (1, 2)$: finite mean, infinite variance

RW in RS time

• Berger, Rosenthal ['13] show that if $\mu = \mathbb{E}(\zeta)$, then for *P*-a.e. ω

$$\lim_{n \to \infty} \frac{Y_n}{\sqrt{n}} \stackrel{d}{=} N(0, \mu^2), \quad \text{quenched CLT for } Y_n$$

Results

Proof ideas

Theorem 1 (B., Cristadoro, Lenci, Ligabó - JSP '16).

Let $\mu = \mathbb{E}(\zeta)$. For P-a.e. ω

- $\lim_{t\to\infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0,\mu)$ quenched CLT for X_t
 - \longrightarrow convergence of finite-dimensional distributions follows
 - \longrightarrow The annealed CLT then follows trivially

Motivations

Case $\alpha \in (1, 2)$: finite mean, infinite variance

RW in RS time

• Berger, Rosenthal ['13] show that if $\mu = \mathbb{E}(\zeta)$, then for *P*-a.e. ω

$$\lim_{n \to \infty} \frac{Y_n}{\sqrt{n}} \stackrel{d}{=} N(0, \mu^2), \quad \text{quenched CLT for } Y_n$$

Results

Proof ideas

Theorem 1 (B., Cristadoro, Lenci, Ligabó - JSP '16).

Let
$$\mu = \mathbb{E}(\zeta)$$
. For P-a.e. ω

• $\lim_{t\to\infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0,\mu)$ quenched CLT for X_t

 \longrightarrow convergence of finite-dimensional distributions follows

- \longrightarrow The annealed CLT then follows trivially
- quenched moments convergence of Y_n/√n to the moments of N(0, μ²).

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

• $\omega_n = \sum_{k=0}^{n-1} \zeta_k$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

•
$$\omega_n = \sum_{k=0}^{n-1} \zeta_k \implies \lim_{n \to \infty} \frac{\omega_n}{n} = \mu \quad P-\text{a.s.}$$

イロト イヨト イヨト イヨト

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

• $\omega_n = \sum_{k=0}^{n-1} \zeta_k \implies \lim_{n \to \infty} \frac{\omega_n}{n} = \mu \quad P-\text{a.s.}$

•
$$Y_n = \omega_{S_n}$$

イロト イヨト イヨト イヨト

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

• $\omega_n = \sum_{k=0}^{n-1} \zeta_k \implies \lim_{n \to \infty} \frac{\omega_n}{n} = \mu \quad P-\text{a.s.}$

•
$$Y_n = \omega_{S_n} \implies \frac{Y_n}{\sqrt{n}} = \frac{\omega_{S_n}}{\sqrt{n}} \stackrel{LLN}{\sim} \frac{\mu S_n}{\sqrt{n}} \stackrel{CLT}{\Longrightarrow} N(0, \mu^2) \quad P-\text{a.s.}$$

イロト イヨト イヨト イヨト

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

- $\omega_n = \sum_{k=0}^{n-1} \zeta_k \implies \lim_{n \to \infty} \frac{\omega_n}{n} = \mu \quad P-\text{a.s.}$
- $Y_n = \omega_{S_n} \implies \frac{Y_n}{\sqrt{n}} = \frac{\omega_{S_n}}{\sqrt{n}} \stackrel{LLN}{\sim} \frac{\mu S_n}{\sqrt{n}} \stackrel{CLT}{\Longrightarrow} N(0, \mu^2) \quad P-a.s.$

2. CLT for X_n :

• Let $T^{-1}(t) := \max_{n \in \mathbb{N}} \{T_n \le t\}$ (# collisions up to time *t*)

イロト イヨト イヨト イヨト

3

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

- $\omega_n = \sum_{k=0}^{n-1} \zeta_k \implies \lim_{n \to \infty} \frac{\omega_n}{n} = \mu \quad P-\text{a.s.}$
- $Y_n = \omega_{S_n} \implies \frac{Y_n}{\sqrt{n}} = \frac{\omega_{S_n}}{\sqrt{n}} \stackrel{LLN}{\sim} \frac{\mu S_n}{\sqrt{n}} \stackrel{CLT}{\Longrightarrow} N(0, \mu^2) \quad P-\text{a.s.}$

2. CLT for X_n :

• Let $T^{-1}(t) := \max_{n \in \mathbb{N}} \{T_n \le t\}$ (\sharp collisions up to time t)

$$\frac{X(t)}{\sqrt{t}} = \frac{X(t) - Y_{T^{-1}(t)}}{\sqrt{t}} + \frac{Y_{T^{-1}(t)}}{\sqrt{T^{-1}(t)}} \sqrt{\frac{T^{-1}(t)}{t}}$$

イロト イヨト イヨト イヨト

3

RW in RS time

Results

Proof ideas

Case $\alpha \in (1, 2)$: Proof ideas

1. CLT for Y_n :

- $\omega_n = \sum_{k=0}^{n-1} \zeta_k \implies \lim_{n \to \infty} \frac{\omega_n}{n} = \mu \quad P-\text{a.s.}$
- $Y_n = \omega_{S_n} \implies \frac{Y_n}{\sqrt{n}} = \frac{\omega_{S_n}}{\sqrt{n}} \stackrel{LLN}{\sim} \frac{\mu S_n}{\sqrt{n}} \stackrel{CLT}{\Longrightarrow} N(0, \mu^2) \quad P-\text{a.s.}$
- 2. CLT for X_{L} :
 - Let $T^{-1}(t) := \max_{n \in \mathbb{N}} \{T_n \le t\}$ (\sharp collisions up to time t)

$$\frac{X_{\rm t}}{\sqrt{t}} = \frac{X_{\rm t} - Y_{T^{-1}(t)}}{\sqrt{t}} + \frac{Y_{T^{-1}(t)}}{\sqrt{T^{-1}(t)}} \sqrt{\frac{T^{-1}(t)}{t}}$$

• By the ergodicity of the process seen from the particle:

$$\frac{T_n}{n} \underset{n \to \infty}{\longrightarrow} \mu, \qquad \frac{T^{-1}(t)}{t} \underset{t \to \infty}{\longrightarrow} 1/\mu, \qquad \mathbb{P}-a.s$$

MotivationsRW in RS timeResults $\alpha \in (0, 1)$:infinite mean and variance

From definitions it turns out that

•
$$\bar{\omega}^{(n)} = \left(\frac{\omega[nx]}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$

 α – stable process

イロト イポト イヨト イヨト

3

Proof ideas

MotivationsRW in RS timeResultsCase $\alpha \in (0, 1)$: infinite mean and variance

From definitions it turns out that

•
$$\bar{\omega}^{(n)} = \left(\frac{\omega[nx]}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$

• $\bar{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \in \mathbb{R}^{+}} \xrightarrow{w} B$

 α – stable process

Proof ideas

invariance principle

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

Motivations RW in RS time Results Case $\alpha \in (0, 1)$: infinite mean and variance

From definitions it turns out that

•
$$\bar{\omega}^{(n)} = \left(\frac{\omega_{[nx]}}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$
 α - stable process
• $\bar{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \in \mathbb{R}^{+}} \xrightarrow{w} B$ invariance principle
 $\bar{Y}^{(n)}(t) := \frac{Y_{[nt]}}{n^{1/2\alpha}} = \bar{\omega}^{(\sqrt{n})} \circ \bar{S}^{(n)}(t)$

Proof ideas

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Э

Motivations RW in RS time Results $\alpha \in (0, 1)$: infinite mean and variance

From definitions it turns out that

•
$$\bar{\omega}^{(n)} = \left(\frac{\omega_{[nx]}}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z \qquad \alpha - \text{stable process}$$

• $\bar{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \in \mathbb{R}^{+}} \xrightarrow{w} B \qquad \text{invariance principle}$
 $\bar{Y}^{(n)}(t) := \frac{Y_{[nt]}}{n^{1/2\alpha}} = \bar{\omega}^{(\sqrt{n})} \circ \bar{S}^{(n)}(t)$

Proof ideas

Theorem 2 (B., Lenci, Pène - SPA '19).

Let $\alpha \in (0, 1)$. Then, under \mathbb{P} and for all $k \in \mathbb{N}$ and $t_1, \ldots, t_k \in \mathbb{R}^+$,

$$(\bar{Y}^{(n)}(t_1),\ldots,\bar{Y}^{(n)}(t_k)) \xrightarrow[n \to \infty]{d} (Z \circ B(t_1),\ldots,Z \circ B(t_k))$$

i.e, the finite-dim. distributions of $\overline{Y}^{(n)}$ *converge to those of* $Z \circ B$ *.*

$$ar{X}^{(n)}(t) := rac{X_{[nt]}}{n^{1/(\alpha+1)}} \simeq ar{\omega}^{(\sqrt{q_n})} \circ ar{S}^{(q_n)} \circ (ar{T}^{(n)}(t))^{-1}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Э

$$ar{X}^{(n)}(t) := rac{X_{[nt]}}{n^{1/(lpha+1)}} \simeq ar{\omega}^{(\sqrt{q_n})} \circ ar{S}^{(q_n)} \circ (ar{T}^{(n)}(t))^{-1}$$

Key point: Scaling analysis of collision times $(T_n)_{n \in \mathbb{N}}$

$$ar{X}^{(n)}(t) := rac{X_{[nt]}}{n^{1/(lpha+1)}} \simeq ar{\omega}^{(\sqrt{q_n})} \circ ar{S}^{(q_n)} \circ (ar{T}^{(n)}(t))^{-1}$$

Key point: Scaling analysis of collision times $(T_n)_{n \in \mathbb{N}}$

$$T_n := \sum_{k=1}^n |\omega_{S_k} - \omega_{S_{k-1}}| = \sum_{k \in \mathbb{Z} \setminus \{0\}} \mathcal{N}_n(k) \zeta_k$$

where $N_n(k) = \#\{j \in \{0, ..., n\} : [k, k + 1] \subseteq [S_{j-1}, S_j]\}$

= number of times S_n jumps over the edge (k, k + 1)

・ロト ・聞 ト ・ ヨト ・ ヨト

$$ar{X}^{(n)}(t) := rac{X_{[nt]}}{n^{1/(lpha+1)}} \simeq ar{\omega}^{(\sqrt{q_n})} \circ ar{S}^{(q_n)} \circ (ar{T}^{(n)}(t))^{-1}$$

Key point: Scaling analysis of collision times $(T_n)_{n \in \mathbb{N}}$

$$T_n := \sum_{k=1}^n |\omega_{S_k} - \omega_{S_{k-1}}| = \sum_{k \in \mathbb{Z} \setminus \{0\}} \mathcal{N}_n(k) \zeta_k$$

where $N_n(k) = \#\{j \in \{0, ..., n\} : [k, k + 1] \subseteq [S_{j-1}, S_j]\}$

= number of times S_n jumps over the edge (k, k + 1)

イロト 不得 とくき とくきと

Then $(T_n)_{n \in \mathbb{N}}$ can be thought as a RW in a random scenery

Motivations **RW** in **RS** time Proof ideas Results 00000000 Convergence of RWRS: Kesten-Spitzer process Theorem 3 (Kesten, Spitzer '79). Let $\alpha \in (0,1)$. Under \mathbb{P} , and taking $n \to \infty$, it holds $\left(\frac{\mathcal{I}_{[ns]}}{\mathbb{D}^{\frac{1+\alpha}{2}}}\right) \xrightarrow{w} \Delta \quad \text{in } \mathcal{D}(\mathbb{R}^+, J_1),$ where $\Delta(t) = \int_{-\infty}^{+\infty} L_t(x) dZ(x)$ Kesten-Spitzer process

Where $L_t = (L_t(x))_{x \in \mathbb{R}}$ is the **local time** of the Browniam motion B and Z an α -stable process on \mathbb{R} .

イロト イボト イヨト イヨト 二日

Proof ideas

Assumption on the underlying RW: $\mathbb{E}(|\xi_1|^{2/\alpha+\varepsilon}) < \infty$.

Proposition 1 (B., Lenci, Pène - SPA '19).

Let $\alpha \in (0, 1)$. Under \mathbb{P} , and taking $n \to \infty$, it holds

$$\left(\frac{T_{[ns]}}{n^{\frac{1+\alpha}{2\alpha}}}\right)_{s\in\mathbb{R}^+}\xrightarrow{w}\Delta\quad\text{in }D(\mathbb{R}^+,J_1)\,.$$

3

Assumption on the underlying RW: $\mathbb{E}(|\xi_1|^{2/\alpha+\varepsilon}) < \infty$.

Proposition 1 (B., Lenci, Pène - SPA '19).

Let $\alpha \in (0, 1)$. Under \mathbb{P} , and taking $n \to \infty$, it holds

$$\left(\frac{T_{[ns]}}{n^{\frac{1+\alpha}{2\alpha}}}\right)_{s\in\mathbb{R}^+} \xrightarrow{w} \Delta \quad \text{in } D(\mathbb{R}^+, J_1).$$

Moreover, it holds the following joint convergence

Lemma 4.

Under $\mathbb{P},$ and taking $n \to \infty,$ it holds

$$\left(\bar{\omega}^{(n)}, \bar{S}^{(n)}, \bar{T}^{(n)}
ight) \stackrel{w}{\longrightarrow} (Z, B, \Delta) \quad \text{ in } D(\mathbb{R}, J_1) imes (D(\mathbb{R}^+, J_1))^2$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Results

Proof ideas

Convergence of the main process X

Theorem 5 (B., Lenci, Pène - SPA '19).

Let $\alpha \in (0, 1)$. Under \mathbb{P} , and taking $n \to \infty$, the finite-dimensional distributions of $\overline{X}^{(n)}$ converge to the corresponding distribution of $Z \circ B \circ \Delta^{-1}$.

Results

Proof ideas

Convergence of the main process X

Theorem 5 (B., Lenci, Pène - SPA '19).

Let $\alpha \in (0, 1)$. Under \mathbb{P} , and taking $n \to \infty$, the finite-dimensional distributions of $\overline{X}^{(n)}$ converge to the corresponding distribution of $Z \circ B \circ \Delta^{-1}$.

Remarks

For α ∈ (0, 1) then the processes Y and X display superdiffusive behavior with scaling exponent, resp., 1/2α and 1/(α + 1).

Results

Convergence of the main process X

Theorem 5 (B., Lenci, Pène - SPA '19).

Let $\alpha \in (0, 1)$. Under \mathbb{P} , and taking $n \to \infty$, the finite-dimensional distributions of $\overline{X}^{(n)}$ converge to the corresponding distribution of $Z \circ B \circ \Delta^{-1}$.

Remarks

- For α ∈ (0, 1) then the processes Y and X display superdiffusive behavior with scaling exponent, resp., 1/2α and 1/(α + 1).
- Results can not be extended to a functional limit theorem w.r.t to the Skorokhod topology as Z ∘ B and Z ∘ B ∘ Δ⁻¹ have discontinuities without one-sided limits.

Results

Proof ideas ●೧೧೧೧೧

Case $\alpha \in (0, 1)$: Proof ideas

General method: Weak convergence of Prop. 1 follows by the classic strategy: Convergence of finite dimensional distributions + tightness.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Results

Proof ideas ●○○○○○

Case $\alpha \in (0, 1)$: Proof ideas

General method: Weak convergence of Prop. 1 follows by the classic strategy: Convergence of finite dimensional distributions + tightness.

Convergence of finite dimensional distributions are based on characteristic functions.

Results

Proof ideas ●೧೧೧೧೧

Case $\alpha \in (0, 1)$: Proof ideas

General method: Weak convergence of Prop. 1 follows by the classic strategy: Convergence of finite dimensional distributions + tightness.

Convergence of finite dimensional distributions are based on characteristic functions.

Key point: (T_n) behaves in the limit as a RWRS, converging to the Kesten-Spitzer process Δ .

Results

Proof ideas

Characteristic function of T_n

- $\overline{T}^{(n)}(s) = \frac{1}{n^{(1+\alpha)/2\alpha}} \sum_{k \in \mathbb{Z} \setminus \{0\}} \mathcal{N}_{[ns]}(k) \zeta_k$
- $\phi_{\zeta}(\theta) = \exp[-c_1|\theta|^{\alpha}(1 \imath c_2 \operatorname{sgn} \theta)]$ (Hyp. $\zeta \sim \alpha$ -stable,)

э

Results

Proof ideas

• $\overline{T}^{(n)}(s) = \frac{1}{n^{(1+\alpha)/2\alpha}} \sum_{k \in \mathbb{Z} \setminus \{0\}} \mathcal{N}_{[ns]}(k) \zeta_k$

RW in **RS** time

• $\phi_{\zeta}(\theta) = \exp[-c_1|\theta|^{\alpha}(1 - \imath c_2 \operatorname{sgn} \theta)]$ (Hyp. $\zeta \sim \alpha$ -stable,)

$$\mathbb{E}[\exp(\imath\theta \,\overline{T}^{(n)}(s)) \,|\, S] = \prod_{k \in \mathbb{Z} \setminus \{0\}} \phi_{\zeta} \left(\theta \,\frac{\mathcal{N}_{[ns]}(k)}{n^{(1+\alpha)/2\alpha}}\right)$$
$$= \exp\left(-c_{1}|\theta|^{\alpha}(1 - \imath c_{2} \mathrm{sgn}\theta) \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{\left(\mathcal{N}_{[ns]}(k)\right)^{\alpha}}{n^{(1+\alpha)/2}}\right)$$

э

On the other hand

$$\mathbb{E}[\exp(\imath\theta\Delta(s))] = \mathbb{E}\left[\exp\left(-c_1(1-\imath c_2 \operatorname{sgn}\theta)|\theta|^{\alpha} \int_{\mathbb{R}} (L_s(x))^{\alpha} dx\right)\right]$$

and one has to show

$$\sum_{k\in\mathbb{Z}\setminus\{0\}}\frac{\left(\mathcal{N}_{[ns]}(k)\right)^{\alpha}}{n^{(1+\alpha)/2}}\overset{d}{\longrightarrow}\int_{\mathbb{R}}(L_{s}(x))^{\alpha}dx$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

On the other hand

$$\mathbb{E}[\exp(\imath\theta\Delta(s))] = \mathbb{E}\left[\exp\left(-c_1(1-\imath c_2 \operatorname{sgn}\theta)|\theta|^{\alpha} \int_{\mathbb{R}} (L_s(x))^{\alpha} dx\right)\right]$$

and one has to show

$$\sum_{k\in\mathbb{Z}\setminus\{0\}}\frac{\left(\mathcal{N}_{[ns]}(k)\right)^{\alpha}}{n^{(1+\alpha)/2}}\overset{d}{\longrightarrow}\int_{\mathbb{R}}(L_{s}(x))^{\alpha}dx$$

- $\sum_{k \in \mathbb{Z} \setminus \{0\}} \mathbb{E}\left[|\mathcal{N}_n(k) \mathbb{E}[|\xi|] N_n(k) |^{\alpha} \right] = o(n^{(1+\alpha)/2})$
- results and strategy implemented in [Kesten Spitzer, '79]

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

э

Motivations	RW in RS time	Results	Proof ideas
			000000

Conclusions

• We represent the Lévy Lorentz gas as a RW in a random scenery time, and show convergence of the collision times to Kesten Spitzer process.

(4 冊 ト 4 三 ト 4 三 ト

Motivations	RW in RS time	Results	Proof ideas
			000000

Conclusions

- We represent the Lévy Lorentz gas as a RW in a random scenery time, and show convergence of the collision times to Kesten Spitzer process.
- For α ∈ (1, 2) (integrable environment) we prove in [BCLL'16] quenched CLT for discrete and continuous time process.
 ⇒ quenched diffusive behavior.

(4月) (4日) (4日)

Conclusions

- We represent the Lévy Lorentz gas as a RW in a random scenery time, and show convergence of the collision times to Kesten Spitzer process.
- For α ∈ (1, 2) (integrable environment) we prove in [BCLL'16] quenched CLT for discrete and continuous time process.
 ⇒ quenched diffusive behavior.
- For α ∈ (0, 1) (non-integrable environment) we establish in [BLP'19] a functional limit theorem for discrete and continuous time.
 - \implies annealed superdiffusive behavior.

Open problems

- Annealed moments
 - comparison with previous estimates and simulations;
 - comparison with persistent RW on averaged environment. Artuso, Cristadoro, Onofri, Radice ['18]

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

Open problems

- Annealed moments
 - comparison with previous estimates and simulations;
 - comparison with persistent RW on averaged environment. Artuso, Cristadoro, Onofri, Radice ['18]
- Quenched functional convergence for α ∈ (0, 1), and Moment assumption over the underlying RW in 1D.

Open problems

- Annealed moments
 - comparison with previous estimates and simulations;
 - comparison with persistent RW on averaged environment. Artuso, Cristadoro, Onofri, Radice ['18]
- Quenched functional convergence for α ∈ (0, 1), and Moment assumption over the underlying RW in 1D.
- What happens in dimension $D \ge 2$?
 - definition of a 2 D-Lévy environment;
 - comparison with 2D and 3D- models on Lévy-like environments. Buonsante, Burioni, Vezzani ['11]

Thank you for your attention!

Alessandra Bianchi RW in a non-integrable RS time

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト