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Introduction

Let Λ : [0, 1] → R be a C1 Lipschitz function with first order derivative λ. For m a prob-
ability measure on R and F0 the cdf of m, we consider the SDE nonlinear in the sense of
McKean: Xt = X0 + σWt +

∫ t

0
λ (F(s, Xs)) ds, t ∈ [0, T]

F(t, x) = P (Xt ≤ x)
where the random variable X0 is distributed according to m and independent from the Brow-
nian motion (Wt)t≥0.
For t > 0, we denote by µt the marginal law of Xt and p(t, x) its probability den-
sity function that exists. F(t, x) is solution to the following viscous conservation law:
∂tF(t, x) + ∂x

(
Λ(F(t, x))

)
= σ2

2 ∂xxF(t, x) with F0(x) = m ((−∞, x]).

We approximate the cdf of Xt by the empirical cdf FN,h(t, x) = 1
N

N
∑

i=1
1{

Xi,N,h
t ≤x

} of N inter-

acting particles (Xi,N,h
t )i∈J1,NK evolving according to:

Xi,N,h
t = Xi

0 + σWi
t +

∫ t

0
λN

 N
∑
j=1

1{
X j,N,h

τh
s
≤Xi,N,h

τh
s

}
 ds, 1 ≤ i ≤ N, t ∈ [0, T]

with time-step h ∈ (0, T], (Wi)i≥1 i.i.d. copies of W and τh
s = bs/hch. The drift coefficient

of the ith particle in the increasing order is defined by λN(i) = N
(

Λ
(

i
N

)
−Λ

(
i−1
N

))
. We

also define the associated empirical measure by µN,h
t = 1

N
N
∑

i=1
δXi,N,h

t
.

Wasserstein distance

Let us introduce the Wasserstein distance of index 1 defined for two probability measures µ
and ν as:

W1(µ, ν) = inf {E [|X−Y|] ; Law(X) = µ, Law(Y) = ν}

= sup
ϕ∈L

(∫
Rd

ϕ(x)µ(dx)−
∫

Rd
ϕ(x)ν(dx)

)
where L denotes the set of all 1-Lipschitz function ϕ : Rd → R. Moreover, if d = 1:

W1(µ, ν) =
∫ 1

0

∣∣∣F−1
µ (u)− F−1

ν (u)
∣∣∣ du =

∫
R

∣∣Fµ(x)− Fν(x)
∣∣ dx

where Fη(x) = η ((−∞; x]) and F−1
η (u) = inf

{
x ∈ R : Fη(x) ≥ u

}
denote respectively the

cdf and the quantile function of a probability measure η on R.

Particle initialization

The initial positions (Xi
0)i≥1 of the particles are either deterministic or random variables.

I When choosing a random initialization, we denote by F̂N
0 (x) = 1

N
N
∑

i=1
1{Xi

0≤x} the empir-

ical cdf of the N first random variables in the sequence (Xi
0)i≥1 i.i.d. according to m with

µ̂N
0 = 1

N
N
∑

i=1
δXi

0
its empirical measure.

I When choosing a deterministic initialization, we seek to construct a family
(

xN
i

)
1≤i≤N

of initial positions such that the piecewise constant function F̃N
0 (x) = 1

N
N
∑

i=1
1{xN

i ≤x}
approximates FN,h

0 (x) with a sufficiently high accuracy. So we minimize the applica-

tion y 7→
∫ i

N
i−1
N

∣∣∣F−1
0 (u)− y

∣∣∣ du for each i ∈ J1, NK. We then choose the optimal de-

terministic initialization
(

xN
i = F−1

0

(
2i−1
2N

))
i≥1

that reaches inf
(xN

1 ,...,xN
N)∈RN

W1

(
µ̃N

0 , m
)

=

inf
(xN

1 ,...,xN
N)∈RN

N
∑

i=1

∫ i
N

i−1
N

∣∣∣F−1
0 (u)− xN

i

∣∣∣ du. We also denote by µ̃N
0 = 1

N
N
∑

i=1
δxN

i
its associated

empirical measure.
The next proposition gives the assumptions under which the L1-norm of the difference be-
tween F0 and F̂N

0 or F̃N
0 is of order N−1/2.

Proposition 0.1:

We have the following results concerning the O(N−1/2) behaviour of the errors:

sup
N≥1

√
NE

[
W1

(
µ̂N

0 , m
)]

< ∞

m∫
R
|x|2+m(dx) < ∞ ⇒

∫
R

√
F0(x)(1− F0(x)) dx < ∞ ⇒

∫
R
|x|2m(dx) < ∞

⇒ sup
x≥1

x
∫ +∞

x
(F0(−y) + 1− F0(y)) dy < ∞ ⇒

∫
R
|x|2−m(dx) < ∞

⇓
sup
N≥1

√
NW1

(
µ̃N

0 , m
)
< ∞

Moreover, none of the implications is an equivalence and there exists a probability mea-

sure m such that
∫

R
|x|2−m(dx) < ∞ and lim

N→∞

√
NW1

(
µ̃N

0 , m
)
= ∞.

Concerning the L1-weak error between F0 and FN,h
0 , since the empirical cdf of i.i.d. samples

is unbiased E
[

F̂N
0 (x)

]
= F0(x) for all N ≥ 1 and x ∈ R then

∫
R

∣∣∣E [F̂N
0 (x)

]
− F0(x)

∣∣∣ dx =

0. As for the deterministic initialization, we prove in the next proposition that∫
R

∣∣∣F̃N
0 (x)− F0(x)

∣∣∣ dx is of order N−1.

Proposition 0.2:

When m is compactly supported i.e. ∃ −∞ < c ≤ d < ∞ such that m([c, d]) = 1, then

W1

(
µ̃N

0 , m
)
≤ d− c

2N
.

L1-strong error

We estimate the mean of the Wasserstein distance of index 1 for the marginal law µN,h
t of the

Euler discretization with time-step h of a system of N interacting particles and its limit µt in
the following result.

Theorem 0.1:
Assume either that the initial positions are i.i.d. according to m and∫

R

√
F0(x)(1− F0(x)) dx < ∞ or the initial positions are optimal deterministic and

sup
x≥1

x
∫ +∞

x
(F0(−y) + 1− F0(y)) dy. Then:

∃C < ∞, ∀N ∈N∗, sup
t≤T

E
[
W1

(
µN,0

t , µt

)]
≤ C√

N
.

Moreover, if λ is Lipschitz continuous then:

∃C < ∞, ∀N ∈N∗, ∀h ∈ (0, T], sup
t≤T

E
[
W1

(
µN,h

t , µt

)]
≤ C

(
1√
N

+ h
)

.

Under additional regularity upon Λ and F0, and with deterministic initial conditions, M.
Bossy proved a stronger result for the L1 and L∞ norms.

Theorem 0.2:
Assume that Λ is C3, F0 is C2 bounded with bounded first and second order derivatives
in x and ∃ M, C, β > 0, α ≥ 0 such that |∂xF0(x)| ≤ α exp

(
−βx2/2

)
when |x| > M.

Moreover, the initial positions are deterministic and given by xN
i = F−1

0

(
i
N

)
when

i = 1, .., N − 1 and xN
N = F−1

0

(
1− 1

2N

)
. Then ∀t, h ∈ [0, T], N ∈N∗,

E
[
W1

(
µN,h

t , µt

)]
+ sup

x∈R

(
E
[∣∣∣FN,h(t, x)− F(t, x)

∣∣∣]) = O
(

1√
N

+ h
)

.

L1-weak error

Now, we prove that the L1-weak error between the empirical cumulative distribution func-
tion FN,h of the Euler discretization with time-step h of the system of N interacting particles
and its limit F is O

(
1
N + h

)
. Let ϕ ∈ L and E

[
µN,h

t

]
denote the probability measure on R

s.t. E
[∫

R ϕ(x)µN,h
t (dx)

]
= 1

N
N
∑

i=1
E
[

ϕ
(

Xi,N,h
t

)]
.

Theorem 0.3:
Assume that λ is Lipschitz continuous and either that the initial positions are optimal
deterministic with m being compactly supported or that the initial positions are i.i.d. ac-

cording to m and for some ρ > 1,
∫

R
|x|ρm(dx) < ∞. Then:

∃Cb < ∞, ∀N ∈N∗, ∀h ∈ [0, T], sup
t≤T
W1

(
E
[
µN,h

t

]
, µt

)
≤ Cb

(
1
N

+ h
)

.

Remark 1 Using the dual formulation of the Wasserstein distance exposed above, we have the addi-
tional result:

∃C < ∞, ∀N ∈N∗, ∀t, h ∈ [0, T], sup
ϕ∈L

∣∣∣∣∣E
[

1
N

N
∑
i=1

ϕ
(

Xi,N,h
t

)]
−
∫

R
ϕ(x)µ(dx)

∣∣∣∣∣ ≤ C
(

1
N

+ h
)

.

Existing result

I Results of weak error behaviour in O(N−1) for particle approximations of general
McKean-Vlasov SDEs have been exposed by Kolokoltsov (2010) under high constraints of
regularity of the coefficients.
I In the context of systems of diffusive particles interacting through moments, B. and Jour-
dain (18)prove under specific constraints of regularity on the coefficients that the weak error
behaves in O

(
N−1 + h

)
when h denotes the time step of the Euler discretization.

I Under higher constraints of smoothness on the coefficients, Chassagneux, Szpruch and
Tse (19) prove for particle approximations of more general McKean-Vlasov SDEs that the

weak error behaves in terms of
k−1
∑

j=1

Cj

N j +O(N−k) where k ∈N∗ refers to the order of smooth-

ness (coefficients are (2k + 1)-times differentiable).


