Bias behaviour for mean-field rank based particle approximations of one dimensional viscous scalar conservation law

Oumaima Bencheikh & Benjamin Jourdain CERMICS – École des Ponts ParisTech oumaima.bencheikh@enpc.fr

Introduction

Let $\Lambda : [0,1] \to \mathbb{R}$ be a C^1 Lipschitz function with first order derivative λ . For *m* a probability measure on \mathbb{R} and F_0 the cdf of *m*, we consider the SDE nonlinear in the sense of McKean:

 $\begin{cases} X_t = X_0 + \sigma W_t + \int_0^t \lambda \left(F(s, X_s) \right) \, ds, & t \in [0, T] \\ F(t, x) = \mathbb{P} \left(X_t \le x \right) \end{cases}$

Concerning the L^1 -weak error between F_0 and $F_0^{N,h}$, since the empirical cdf of i.i.d. samples is unbiased $\mathbb{E}\left[\hat{F}_0^N(x)\right] = F_0(x)$ for all $N \ge 1$ and $x \in \mathbb{R}$ then $\int_{\mathbb{R}} \left|\mathbb{E}\left[\hat{F}_0^N(x)\right] - F_0(x)\right| dx =$ 0. As for the deterministic initialization, we prove in the next proposition that $\int_{\mathbb{R}} \left|\tilde{F}_0^N(x) - F_0(x)\right| dx$ is of order N^{-1} .

Proposition 0.2:

When *m* is compactly supported i.e. $\exists -\infty < c \leq d < \infty$ such that m([c,d]) = 1, then

where the random variable X_0 is distributed according to m and independent from the Brownian motion $(W_t)_{t\geq 0}$.

For t > 0, we denote by μ_t the marginal law of X_t and p(t, x) its probability density function that exists. F(t, x) is solution to the following viscous conservation law: $\partial_t F(t, x) + \partial_x \left(\Lambda(F(t, x)) \right) = \frac{\sigma^2}{2} \partial_{xx} F(t, x)$ with $F_0(x) = m((-\infty, x])$.

We approximate the cdf of X_t by the empirical cdf $F^{N,h}(t,x) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{\{X_t^{i,N,h} \le x\}}$ of N interacting particles $(X_t^{i,N,h})_{i \in [\![1,N]\!]}$ evolving according to:

$$X_{t}^{i,N,h} = X_{0}^{i} + \sigma W_{t}^{i} + \int_{0}^{t} \lambda^{N} \left(\sum_{j=1}^{N} \mathbf{1}_{\left\{ X_{\tau_{s}^{h}}^{j,N,h} \leq X_{\tau_{s}^{h}}^{i,N,h} \right\}} \right) ds, \ 1 \leq i \leq N, \ t \in [0,T]$$

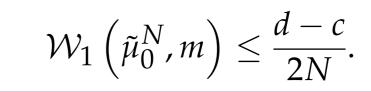
with time-step $h \in (0, T]$, $(W^i)_{i \ge 1}$ i.i.d. copies of W and $\tau_s^h = \lfloor s/h \rfloor h$. The drift coefficient of the i^{th} particle in the increasing order is defined by $\lambda^N(i) = N\left(\Lambda\left(\frac{i}{N}\right) - \Lambda\left(\frac{i-1}{N}\right)\right)$. We also define the associated empirical measure by $\mu_t^{N,h} = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^{i,N,h}}$.

Wasserstein distance

Let us introduce the Wasserstein distance of index 1 defined for two probability measures μ and ν as:

$$\mathcal{W}_{1}(\mu,\nu) = \inf \left\{ \mathbb{E} \left[|X - Y| \right]; \operatorname{Law}(X) = \mu, \operatorname{Law}(Y) = \nu \right\} \\= \sup_{\varphi \in \mathcal{L}} \left(\int_{\mathbb{R}^{d}} \varphi(x) \mu(dx) - \int_{\mathbb{R}^{d}} \varphi(x) \nu(dx) \right)$$

where \mathcal{L} denotes the set of all 1-Lipschitz function $\varphi : \mathbb{R}^d \to \mathbb{R}$. Moreover, if d = 1:



L¹-strong error

We estimate the mean of the Wasserstein distance of index 1 for the marginal law $\mu_t^{N,h}$ of the Euler discretization with time-step *h* of a system of *N* interacting particles and its limit μ_t in the following result.

Theorem 0.1:

Assume either that the initial positions are i.i.d. according to *m* and $\int_{\mathbb{R}} \sqrt{F_0(x)(1-F_0(x))} dx < \infty$ or the initial positions are optimal deterministic and $\sup_{x\geq 1} x \int_x^{+\infty} (F_0(-y)+1-F_0(y)) dy$. Then:

$$\exists C < \infty, \forall N \in \mathbb{N}^*, \quad \sup_{t < T} \mathbb{E} \left[\mathcal{W}_1 \left(\mu_t^{N,0}, \mu_t \right) \right] \leq \frac{C}{\sqrt{N}}.$$

Moreover, if λ is Lipschitz continuous then:

$$\mathbb{C} < \infty, \forall N \in \mathbb{N}^*, \forall h \in (0, T], \quad \sup_{t \le T} \mathbb{E} \left[\mathcal{W}_1 \left(\mu_t^{N, h}, \mu_t \right) \right] \le C \left(\frac{1}{\sqrt{N}} + h \right).$$

Under additional regularity upon Λ and F_0 , and with deterministic initial conditions, M. Bossy proved a stronger result for the L^1 and L^{∞} norms.

Theorem 0.2:

Assume that Λ is C^3 , F_0 is C^2 bounded with bounded first and second order derivatives in x and $\exists M, C, \beta > 0$, $\alpha \ge 0$ such that $|\partial_x F_0(x)| \le \alpha \exp\left(-\beta x^2/2\right)$ when |x| > M. Moreover, the initial positions are deterministic and given by $x_i^N = F_0^{-1}\left(\frac{i}{N}\right)$ when i = 1, ..., N - 1 and $x_N^N = F_0^{-1}\left(1 - \frac{1}{2N}\right)$. Then $\forall t, h \in [0, T], N \in \mathbb{N}^*$, $\mathbb{E}\left[\mathcal{W}_1\left(\mu_t^{N,h}, \mu_t\right)\right] + \sup_{x \in \mathbb{R}}\left(\mathbb{E}\left[\left|F^{N,h}(t,x) - F(t,x)\right|\right]\right) = \mathcal{O}\left(\frac{1}{\sqrt{N}} + h\right)$.

$$\mathcal{W}_{1}(\mu,\nu) = \int_{0}^{1} \left| F_{\mu}^{-1}(u) - F_{\nu}^{-1}(u) \right| \, du = \int_{\mathbb{R}} \left| F_{\mu}(x) - F_{\nu}(x) \right| \, dx$$

where $F_{\eta}(x) = \eta((-\infty; x])$ and $F_{\eta}^{-1}(u) = \inf \{x \in \mathbb{R} : F_{\eta}(x) \ge u\}$ denote respectively the cdf and the quantile function of a probability measure η on \mathbb{R} .

Particle initialization

The initial positions $(X_0^i)_{i\geq 1}$ of the particles are either deterministic or random variables. \blacktriangleright When choosing a random initialization, we denote by $\hat{F}_0^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\{X_0^i \leq x\}}$ the empirical cdf of the *N* first random variables in the sequence $(X_0^i)_{i\geq 1}$ i.i.d. according to *m* with $\hat{\mu}_0^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_0^i}$ its empirical measure.

► When choosing a deterministic initialization, we seek to construct a family $(x_i^N)_{1 \le i \le N}$ of initial positions such that the piecewise constant function $\tilde{F}_0^N(x) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{\{x_i^N \le x\}}$ approximates $F_0^{N,h}(x)$ with a sufficiently high accuracy. So we minimize the application $y \mapsto \int_{\frac{i-1}{N}}^{\frac{i}{N}} \left| F_0^{-1}(u) - y \right| du$ for each $i \in [1, N]$. We then choose the optimal deterministic initialization $(x_i^N = F_0^{-1}(\frac{2i-1}{2N}))_{i\ge 1}$ that reaches $\inf_{(x_1^N, \dots, x_N^N) \in \mathbb{R}^N} \mathcal{W}_1(\tilde{\mu}_0^N, m) =$ $\inf_{(x_1^N, \dots, x_N^N) \in \mathbb{R}^N} \sum_{i=1}^N \int_{\frac{i-1}{N}}^{\frac{i}{N}} \left| F_0^{-1}(u) - x_i^N \right| du$. We also denote by $\tilde{\mu}_0^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i^N}$ its associated empirical measure. The next proposition gives the assumptions under which the L^1 -norm of the difference between F_0 and \hat{F}_0^N or \tilde{F}_0^N is of order $N^{-1/2}$.

L¹-weak error

Now, we prove that the L^1 -weak error between the empirical cumulative distribution function $F^{N,h}$ of the Euler discretization with time-step h of the system of N interacting particles and its limit F is $\mathcal{O}\left(\frac{1}{N}+h\right)$. Let $\varphi \in \mathcal{L}$ and $\mathbb{E}\left[\mu_t^{N,h}\right]$ denote the probability measure on \mathbb{R} s.t. $\mathbb{E}\left[\int_{\mathbb{R}} \varphi(x)\mu_t^{N,h}(dx)\right] = \frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[\varphi\left(X_t^{i,N,h}\right)\right].$

Theorem 0.3:

Assume that λ is Lipschitz continuous and either that the initial positions are optimal deterministic with *m* being compactly supported or that the initial positions are i.i.d. according to *m* and for some $\rho > 1$, $\int_{\mathbb{R}} |x|^{\rho} m(dx) < \infty$. Then:

$$\exists C_b < \infty, \forall N \in \mathbb{N}^*, \forall h \in [0, T], \quad \sup_{t \le T} \mathcal{W}_1\left(\mathbb{E}\left[\mu_t^{N, h}\right], \mu_t\right) \le C_b\left(\frac{1}{N} + h\right).$$

Remark 1 *Using the dual formulation of the Wasserstein distance exposed above, we have the additional result:*

Proposition 0.1:

We have the following results concerning the $O(N^{-1/2})$ behaviour of the errors:

Moreover, none of the implications is an equivalence and there exists a probability measure *m* such that $\int_{\mathbb{R}} |x|^{2-m} (dx) < \infty$ and $\lim_{N \to \infty} \sqrt{N} \mathcal{W}_1(\tilde{\mu}_0^N, m) = \infty$.

 $\exists C < \infty, \forall N \in \mathbb{N}^*, \forall t, h \in [0, T], \sup_{\varphi \in \mathcal{L}} \left| \mathbb{E} \left| \frac{1}{N} \sum_{i=1}^N \varphi \left(X_t^{i, N, h} \right) \right| - \int_{\mathbb{R}} \varphi(x) \mu(dx) \right| \le C \left(\frac{1}{N} + h \right).$

Existing result

► Results of weak error behaviour in $O(N^{-1})$ for particle approximations of general McKean-Vlasov SDEs have been exposed by Kolokoltsov (2010) under high constraints of regularity of the coefficients.

▶ In the context of systems of diffusive particles interacting through moments, B. and Jourdain (18) prove under specific constraints of regularity on the coefficients that the weak error behaves in $\mathcal{O}\left(N^{-1}+h\right)$ when *h* denotes the time step of the Euler discretization. ▶ Under higher constraints of smoothness on the coefficients, Chassagneux, Szpruch and Tse (19) prove for particle approximations of more general McKean-Vlasov SDEs that the weak error behaves in terms of $\sum_{j=1}^{k-1} \frac{C_j}{N^j} + \mathcal{O}(N^{-k})$ where $k \in \mathbb{N}^*$ refers to the order of smoothness (coefficients are (2k+1)-times differentiable).