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Introduction
Nicolas Durrande used an approach based on
Gaussian process Regression to analyse data
over periodic phenomena by doing a decompo-
sition of a covariance function in two parts, one
periodic and the other aperiodic.
As wavelets are the extention of Fourier in the
pseudo periodic case, our goal is to take an ap-
proach similar to the one Nicolas Durrande took,
but with wavelets Riesz basis instead of Fourier
basis.

Preliminary work
Considering the wavelet workspace introduced
in [1], we can

• Create a Riesz basis by dilatation and
translation of a wavelet ψ. We will use
the notation: ψa,b(x) = ψ((x− b)/a).

• Decompose our workspace V0 in two: V0 =
V1 ⊕W1 where W1 is the space from the
Riesz basis for a given scaling parameter
and V1 is a residual space.

• Obtain a space Hw=
⊕

j=1..n

Wj that has all

the Riesz basis information by proceeding
as above iteratively.

We need to choose our wavelet ψ with respect
to some conditions given by [2]:

1. Hw contains informations on the frequen-
cies we seek to analyse

2. Hw is a subset of H.

We work on Matern kernels as their RKHS
is easy to deal with (a Maternn/2 creates a
sobolev space Wn,2). We know that ψ ∈ L2(R),
L2(R) =W0,2 and that for 0 ≤ n1 ≤ n2,

Wn2,2 ⊂ Wn1,2 ⊂ W0,2. (1)

We choose to use the spline wavelets (we will
refer to the function as Ψm where m − 1 is the
order of the polynomials in Ψ), as it is straight-
forward to prove that the spline wavelet of order
m belongs to W(m−1),2.

Figure 1: Image of x 7→ Ψ3
a,b(x) = Ψ3((x − b)/a)

for a = 1 and b = 0

Algorithm Explanation
Steps explanation of our algorithm

1. Chose BΨ: We choose a set of parameter a = {a1, a2...an} and N to create a wavelet Riesz
basis BΨ = {Ψm

a,b}a=a1...an,b=1..N which enables us to make a time-frequency analysis of the
signal. We need to check the correspondance between the chosen wavelet frequency domain and
the frequencies present in the signal.

Figure 2: Frequency domain of our test signal and the wavelet Ψ3
a,b for a well chosen a (left) and a

bad one (right).

2. Compute Kw = BT
Ψ(X)G−1BΨ(X) and Kr: we use the formulas provided in [2] to compute G,

the Gram matrix of the functions in BΨ, Kr is the residual kernel.

3. Define K = Kw + Kr: We think the global kernel as the sum of both of the previously defined
kernel. We do not assume that both subkernels are a decomposition of K.

4. Optimize the hyperparameters of K: We use the already implemented method in the python
library GPy to find the max likelihood. The loglikelihood for our gaussian process f given points
of data at the coordinate X will be written as LK = L(σw, σr, lw, lr, X), and is defined by:

LK = log(p(f(x)|x, σw, σr, lw, lr))

= −1

2
f(X)TK−1f(X)− 1

2
log(det(K))− |X|

2
log(2π)

= −1

2
f(X)T (BT

ΨG
−1BΨ +Kr)−1f(X)− 1

2
log(det(BT

ΨG
−1BΨ +Kr))− |X|

2
log(2π).

Results

Figure 3: Comparison of Durrande algorithm response to a chirp (left) and my results (right)

As of now, restrictions on the time (and memory) it takes to compute G−1 only enable us the use of
one a and the wavelet Riesz basis only has 10 members.
By interpreting the right part of Fig. 3, there is an interesting component for our chosen a somewhere
on the time axis, but the method still can not separate the whole chirp from the linear function as
only one scaling of our wavelet is not enough. Our Wavelet kernel is leaving the information he does
not have in the residual kernel.

References
[1] Stephane Mallat. (1998) a wavelet tour of

signal processing, academic press.

[2] Nicolas Durrande, James Hensman, Mag-
nus Rattray, and Neil D. Lawrence. Gaus-
sian process models for periodicity detection,
(2016) peerj computer science 2:e50.

Acknowledgements
I would like to express my special thanks
to Xavier Bay, Laurence Grammont and the
APSSE group for their work and help that
was of great assistance in the understanding of
these subjects. Moreover, this work wouldn’t be
nearly as advanced as it is without the help of
Olivier Alata and Julian Tugaut, I thank them
grealy for their advices.

Conclusion
• Absence of a computation-efficient method

to obtain G. We can not say that our
method provides a solution to model a
chirp right now.

• Some encouraging results: able to separate
the information we have in our wavelet
Riesz basis from the rest.


