Gaussian process regression models under linear inequality conditions

A. F. López-Lopera¹, F. Bachoc², N. Durrande^{1,3}, and O. Roustant¹. ¹Mines Saint-Étienne, France. ²Institut de Mathmatiques de Toulouse, France. ³PROWLER.io, UK. Second workshop on Gaussian Processes at Saint-Étienne. 9 – 11 October 2018, Saint-Étienne, France

Introduction

- Gaussian processes (GPs) have become one of the most attractive Bayesian frameworks in different decision tasks [1].
- It is shown that considering inequality constraints in GPs (e.g. positiveness, monotonicity) can lead to more accurate regression models [2].
- We build on the framework proposed in [2] and our contributions are threefold:
- 1. We extend their framework for general sets of linear inequality constraints.
- 2. We suggest an efficient MCMC sampler to approximate the posterior.
- 3. We investigate theoretical/numerical properties of a constrained likelihood.

Materials and Methods

Gaussian process (GP) regression models

A GP is a collection of random variables, any finite number of which have a joint Gaussian distribution [1]. Let Y be a GP. Then, Y is completely defined by its

Result 2. Constrained Maximum Likelihood (CML)

The conditional log-likelihood is written

 $\mathcal{L}_{\mathcal{C},m}(\theta) = \log p_{\theta}(\mathbf{Y}_m) + \log P_{\theta}(\boldsymbol{\xi} \in \mathcal{C} | \Phi \boldsymbol{\xi} = \mathbf{Y}_m) - \log P_{\theta}(\boldsymbol{\xi} \in \mathcal{C}), \quad (3)$

where the first term is the unconstrained log-likelihood.

Asymptotic property [3]: Let

 $\mathcal{L}_{\mathcal{C},n}(\boldsymbol{\theta}) = \mathcal{L}_n(\boldsymbol{\theta}) + \log P_{\boldsymbol{\theta}}(Y \in \mathcal{E}_{\kappa} | \mathbf{Y}_n) - \log P_{\boldsymbol{\theta}}(Y \in \mathcal{E}_{\kappa}),$

where \mathcal{E}_{κ} is the set of boundedness, monotonicity, and convexity constraints for $\kappa = 1, 2, 3$ (resp.). Assume that $\forall \varepsilon > 0$ and $\forall M < \infty$ (Consistency of the ML),

$$P\left(\sup_{\|\boldsymbol{\theta}-\boldsymbol{\theta}^*\|\geq\varepsilon}(\mathcal{L}_n(\boldsymbol{\theta})-\mathcal{L}_n(\boldsymbol{\theta}^*))\geq -M\right)\xrightarrow[n\to\infty]{}0.$$

Then, (Consistency of the conditional CML)

$$P\left(\sup_{\|\boldsymbol{\theta}-\boldsymbol{\theta}^*\|\geq\varepsilon}(\mathcal{L}_{\mathcal{C},n}(\boldsymbol{\theta})-\mathcal{L}_{\mathcal{C},n}(\boldsymbol{\theta}^*))\geq -M \mid Y\in\mathcal{E}_{\kappa}\right)\xrightarrow[n\to\infty]{} 0.$$

Consequently, $\operatorname{argmax}_{\theta\in\Theta} \mathcal{L}_n(\theta) \xrightarrow[n\to\infty]{P} \theta^* \text{ and } \operatorname{argmax}_{\theta\in\Theta} \mathcal{L}_{\mathcal{C},n}(\theta) \xrightarrow[n\to\infty]{P|Y\in\mathcal{E}_{\kappa}} \theta^*.$

mean function m and covariance function k

 $Y(x) \sim \mathcal{GP}(m(x), k(x, x')),$ (1) where $m(x) = \mathbb{E} \{Y(x)\}$ and $k(x, x') = \mathbb{E} \{[Y(x) - m(x)][Y(x') - m(x')]\}.$

GP regression models under linear inequality conditions [3] 1) Define the finite-dimensional GP Y_m as the piecewise linear interpolation of Y at knots t_1, \dots, t_m (equally-spaced)

 $Y_{m}(x) = \sum_{j=1}^{m} Y(t_{j})\phi_{j}(x), \text{ s.t. } \begin{cases} Y_{m}(x_{i}) = y_{i} & (\text{interpolation conditions}), \\ Y_{m} \in \mathcal{E} & (\text{inequality conditions}), \end{cases}$ (2) where $x_{i} \in [0, 1], y_{i} \in \mathbb{R}$ for $i = 1, \cdots, n, \ \boldsymbol{\xi} = [Y(t_{1}), \cdots, Y(t_{m})] \sim \mathcal{N}(\mathbf{0}, \Gamma)$

Result 3. 2D Nuclear Criticality Example

Figure 3: Nuclear criticality safety dataset. k_{eff} is positive and non-decreasing.

with covariance matrix Γ , and $\phi_1 \cdots, \phi_m$ are hat basis functions.

Figure 2: Finite-dimensional approximation of GP regression models.

Property: the function $Y_m(x) \in \mathcal{E} \leftrightarrow$ the vector $\boldsymbol{\xi} \in \mathcal{C}$ [2].

2) Since linearity preserves Gaussian distributions, quantifying uncertainty on Y_m relies on simulating a truncated Gaussian vector $\boldsymbol{\xi} \in C$ (e.g. MC, MCMC).

Result 1. Performance of MC and MCMC samplers

Table 1: Samplers: Rejection Sampling from the Mode (RSM) [2], Exponential Tilting (ET), Gibbs Sampling (Gibbs), Metropolis-Hasting (MH), Hamiltonian Monte Carlo (HMC) [4]. **Indicators:** effective sample size: $ESS = n/(1 + 2\sum_{\forall k} \hat{\rho}_k)$, time normalised (TN)-ESS.

Toy Example	Method	CPU Time	ESS [×10 ⁴]	TN-ESS	Hyperparameter
		[<i>s</i>]	$(q_{10\%}, q_{50\%}, q_{90\%})$	$[\times 10^4 s^{-1}]$	
Figure 1(b)	RSM	-	-	-	-
	ET	41.16	(0.99, 1.00, 1.00)	0.02	_
	Gibbs	40.28	(0.37, 0.6, 0.91)	0.01	thinning $= 1000$
	MH	_	-	-	_
	НМС	12.92	(0.85, 0.93, 1.00)	0.07	_

(d) GP + ML (n = 8) (e) Constr. GP + ML (n = 8) (f) Constr. GP + CML (n = 8)**Figure 4:** 2D GP regression models using different number of training points *n*. ML: Maximum Likelihood. CML: Constrained Maximum Likelihood.

Table 2: Performance of GPs for different *n* and using 20 random Latin hypercube designs. The accuracy is evaluated using the mean μ and the standard deviation σ of the Q^2 results.

n	GP + MLE	Constr. $GP + MLE$	Constr. $GP + CMLE$
	$\mu \pm \sigma$	$\mu \pm \sigma$	$\mu \pm \sigma$
2	-0.128 ± 1.004	$\textbf{0.967} \pm \textbf{0.026}$	0.952 ± 0.043
4	0.558 ± 0.260	0.981 ± 0.014	$\textbf{0.996} \pm \textbf{0.006}$
6	0.858 ± 0.139	0.940 ± 0.059	$\textbf{0.995} \pm \textbf{0.004}$
8	0.962 ± 0.035	$\textbf{0.995} \pm \textbf{0.003}$	0.981 ± 0.011

Conclusions

- We extended the framework proposed in [2] to deal with any set of linear inequality constraints.
- We suggested an efficient MCMC sampler based on HMC [4] to approximate the truncated posterior distribution.

References

- [1] C. E. Rasmussen and C. K. I. Williams, *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. The MIT Press, 2005.
- [2] H. Maatouk and X. Bay, "Gaussian process emulators for computer experiments with inequality constraints," *Mathematical Geosciences*, vol. 49, no. 5, pp. 557–582, 2017.
- [3] A. F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant, "Finite-dimensional Gaussian approximation with linear inequality constraints," *to appear in SIAM/ASA Journal on Uncertainty Quantification*, 2018.
- [4] A. Pakman and L. Paninski, "Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians," *Journal of Computational and Graphical Statistics*, vol. 23, no. 2, pp. 518–542, 2014.
- [5] F. Bachoc, A. Lagnoux, and A. F. López-Lopera, "Maximum likelihood estimation for Gaussian processes under inequality constraints," *ArXiv e-prints*, Apr. 2018.

• We further investigated theoretical/numerical properties of a constrained likelihood. The asymptotic properties are detailed in [3].

Future works

- To scale the proposed framework for higher dimensions and for a high number of observations.
- To study more theoretical properties of the constrained likelihood.

Acknowledgment

This work was funded by the chair of applied mathematics OQUAIDO. We thank Yann Richet (IRSN) for providing the nuclear criticality safety data.

andres-felipe.lopez@emse.fr