Gaussian process regression models under linear inequality conditions
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Result 2. Constrained Maximum Likelihood (CML)

» Gaussian processes (GPs) have become one of the most attractive Bayesian =~ The conditional log-likelihood is written

frameworks in different decision tasks [1]. Lo m(8) = log po(Y ) + log Pa(& € C|®E =Y ,,) — log Py(€ € C), (3)
o It is shown that considering inequality constraints in GPs (e.g. positiveness,  where the first term is the unconstrained log-likelihood.

monotonicity) can lead to more accurate regression models [2]. Asymptotic property [3]: Let
» We build on the framework proposed in [2] and our contributions are threefold: Len(0) = L,(0)+ log Pe(Y € E.|Y,) — log Pe(Y € &),

where &, is the set of boundedness, monotonicity, and convexity constraints for

1. We extend their framework for general sets of linear inequality constraints.
© AnaTy k=1,2,3 (resp.). Assume that Ve > 0 and VM < oo (Consistency of the ML),

2. We suggest an efficient MCMC sampler to approximate the posterior.

3. We investigate theoretical /numerical properties of a constrained likelihood. P( o ob (£4(0) — Ln(07)) = —M> —0.
Materials and Methods Then, (Consistency of the conditional CML)
Gaussian process (GP) regression models P( sup (Len(0) — Ln(07) > —M ‘ Y € 8,{) —— 0.
: : . : . : . —0*||>¢ A0
A GP is a collection of random variables, any finite number of which have a joint i ; Plyce
Gaussian distribution [1]. Let Y be a GP. Then, Y is completely defined by its ~ Consequently, argmaxgce L£n(6) —— 6" and argmaxgce Len(6) —— 6”.

mean function m and covariance function k
Y(x) ~ GP(m(x), k(x, x)),
where m(x) = E{Y(x)} and k(x,x") = E{[Y(x) — m(x)][Y(x) — m(x')]}.
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Figure 1: Examples GP regression models.

GP regression models under linear inequality conditions [3]
1) Define the finite-dimensional GP Y/, as the piecewise linear interpolation of Y
at knots ty, - - - , t,, (equally-spaced)

Yin(x) = Z Y(t)oi(x), st (2)

where x; € [0,1], ;e Rfori=1,---.n &=[Y(t1), -+, Y(tn)] ~ N (0,T)

Y.(x;) = y; (interpolation conditions),

(b) Constr. GP + ML (n=4) (c)Constr. GP + CML (n = 4)

Y €& (inequality conditions),

with covariance matrix I', and ¢ - - - | @, are hat basis functions.
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Table 2: Performance of GPs for different n and using 20 random Latin hypercube designs. The
accuracy is evaluated using the mean 1 and the standard deviation o of the Q? results.

Property: the function Y,,(x) € £ <> the vector £ € C [2]. GP + MLE  Constr. GP + MLE Constr. GP + CMLE

n
: : : : : : : o : w0 -0 H =0
2) Since linearity preserves Gaussian distributions, quantifying uncertainty on Y, 5 0198 L1004 0.967 & 0.026 3055 £ 0.043

relies on simulating a truncated Gaussian vector & € C (e.g. MC, MCMC). 4 0558 +0260 0981 + 0.014 0.996 - 0.006

6 0.858 +=0.139 0.940 4+ 0.059 0.995 + 0.004
Result 1. Performance of MC and MCMC samplers 5 0962+ 0035 0.995 + 0.003 0981 + 0.011

Figure 2: Finite-dimensional approximation of GP regression models.

Table 1: Samplers: Rejection Sampling from the Mode (RSM) [2], Exponential Tilting
(ET), Gibbs Sampling (Gibbs), Metropolis-Hasting (MH), Hamiltonian Monte Carlo (HMC) [4]. Conclusions
Indicators: effective sample size: ESS = n/(1+ 2> ., pk), time normalised (TN)-ESS.

» We extended the framework proposed in [2] to deal with any set of linear

CPU Time  ESS [x10*]  TN-ESS

Toy Example| Method 4, Hyperparameter inequality constraints.
Y P [s] (910%> G50% Gooss) [*10%s™] YPEP : ¢ . .
RSM _ _ _ _ » We suggested an efficient MCMC sampler based on HMC [4] to approximate
ET 41.16  (0.99,1.00,1.00)  0.02 - the truncated posterior distribution.
Figure 1(b) GI\'/'beS 40.28  (0.37,0.6,0.91) ~ 0.01 thinning = 1000 o We further investigated theoretical/numerical properties of a constrained

HMC 12:92 (0.85 O._93 1.00) 0__07 ] likelihood. The asymptotic properties are detailed in [3].

» To scale the proposed framework for higher dimensions and for a high number
of observations.
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