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Introduction

• Gaussian processes (GPs) have become one of the most attractive Bayesian
frameworks in different decision tasks [1].

• It is shown that considering inequality constraints in GPs (e.g. positiveness,
monotonicity) can lead to more accurate regression models [2].

• We build on the framework proposed in [2] and our contributions are threefold:

1. We extend their framework for general sets of linear inequality constraints.

2. We suggest an efficient MCMC sampler to approximate the posterior.

3. We investigate theoretical/numerical properties of a constrained likelihood.

Materials and Methods

Gaussian process (GP) regression models
A GP is a collection of random variables, any finite number of which have a joint
Gaussian distribution [1]. Let Y be a GP. Then, Y is completely defined by its
mean function m and covariance function k

Y (x) ∼ GP(m(x), k(x , x ′)), (1)

where m(x) = E {Y (x)} and k(x , x ′) = E {[Y (x)−m(x)][Y (x ′)−m(x ′)]}.
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(a) Unconstrained GP
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(b) Constrained GP

Figure 1: Examples GP regression models.

GP regression models under linear inequality conditions [3]
1) Define the finite-dimensional GP Ym as the piecewise linear interpolation of Y
at knots t1, · · · , tm (equally-spaced)

Ym(x) =
m∑
j=1

Y (tj)φj(x), s.t.

{
Ym(xi) = yi (interpolation conditions),

Ym ∈ E (inequality conditions),
(2)

where xi ∈ [0, 1], yi ∈ R for i = 1, · · · , n, ξ = [Y (t1), · · · ,Y (tm)] ∼ N (0,Γ)
with covariance matrix Γ, and φ1 · · · , φm are hat basis functions.
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Figure 2: Finite-dimensional approximation of GP regression models.

Property: the function Ym(x) ∈ E ↔ the vector ξ ∈ C [2].

2) Since linearity preserves Gaussian distributions, quantifying uncertainty on Ym

relies on simulating a truncated Gaussian vector ξ ∈ C (e.g. MC, MCMC).

Result 1. Performance of MC and MCMC samplers

Table 1: Samplers: Rejection Sampling from the Mode (RSM) [2], Exponential Tilting
(ET), Gibbs Sampling (Gibbs), Metropolis-Hasting (MH), Hamiltonian Monte Carlo (HMC) [4].
Indicators: effective sample size: ESS = n/(1 + 2

∑
∀k ρ̂k), time normalised (TN)-ESS.

Toy Example Method
CPU Time ESS [×104] TN-ESS

Hyperparameter
[s] (q10%, q50%, q90%) [×104s−1]

RSM - - - -
ET 41.16 (0.99, 1.00, 1.00) 0.02 -

Figure 1(b) Gibbs 40.28 (0.37, 0.6, 0.91) 0.01 thinning = 1000
MH - - - -

HMC 12.92 (0.85, 0.93, 1.00) 0.07 -
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Result 2. Constrained Maximum Likelihood (CML)

The conditional log-likelihood is written

LC,m(θ) = log pθ(Ym) + log Pθ(ξ ∈ C|Φξ = Ym)− logPθ(ξ ∈ C), (3)

where the first term is the unconstrained log-likelihood.

Asymptotic property [3]: Let

LC,n(θ) = Ln(θ) + log Pθ(Y ∈ Eκ|Yn)− logPθ(Y ∈ Eκ),

where Eκ is the set of boundedness, monotonicity, and convexity constraints for
κ = 1, 2, 3 (resp.). Assume that ∀ε > 0 and ∀M <∞ (Consistency of the ML),

P

(
sup

‖θ−θ∗‖≥ε
(Ln(θ)− Ln(θ∗)) ≥ −M

)
−−−→
n→∞

0.

Then, (Consistency of the conditional CML)

P

(
sup

‖θ−θ∗‖≥ε
(LC,n(θ)− LC,n(θ∗)) ≥ −M

∣∣∣∣ Y ∈ Eκ) −−−→n→∞
0.

Consequently, argmaxθ∈Θ Ln(θ)
P−−−→

n→∞
θ∗ and argmaxθ∈Θ LC,n(θ)

P |Y∈Eκ−−−−→
n→∞

θ∗.

Result 3. 2D Nuclear Criticality Example
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Figure 3: Nuclear criticality safety dataset. keff is positive and non-decreasing.
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(a) GP + ML (n = 4)
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(b) Constr. GP + ML (n = 4)
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(c) Constr. GP + CML (n = 4)
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(d) GP + ML (n = 8)
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(e) Constr. GP + ML (n = 8)
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(f) Constr. GP + CML (n = 8)

Figure 4: 2D GP regression models using different number of training points n. ML: Maximum
Likelihood. CML: Constrained Maximum Likelihood.

Table 2: Performance of GPs for different n and using 20 random Latin hypercube designs. The
accuracy is evaluated using the mean µ and the standard deviation σ of the Q2 results.

n
GP + MLE Constr. GP + MLE Constr. GP + CMLE
µ± σ µ± σ µ± σ

2 −0.128± 1.004 0.967± 0.026 0.952± 0.043
4 0.558± 0.260 0.981± 0.014 0.996± 0.006
6 0.858± 0.139 0.940± 0.059 0.995± 0.004
8 0.962± 0.035 0.995± 0.003 0.981± 0.011

Conclusions

• We extended the framework proposed in [2] to deal with any set of linear
inequality constraints.

• We suggested an efficient MCMC sampler based on HMC [4] to approximate
the truncated posterior distribution.

• We further investigated theoretical/numerical properties of a constrained
likelihood. The asymptotic properties are detailed in [3].

Future works

• To scale the proposed framework for higher dimensions and for a high number
of observations.

• To study more theoretical properties of the constrained likelihood.
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