Approximate Inference in Multi-class and Deep
Gaussian Processes by Minimizing Alpha
Divergences

Daniel Hernandez—-Lobato
Computer Science Department
Universidad Auténoma de Madrid
http://dhnzl.org, daniel.hernandez@uam.es
Joint work with

Carlos Villacampa-Calvo and
Gonzalo Hernandez-Mufioz

1/40

http://dhnzl.org
mailto:daniel.hernandez@uam.es

Outline

® |ntroduction to Multi-class GPs

@ Multi-class GPs using Variational Inference
@® Multi-class GPs using Expectation Propagation
© Multi-class GPs using Alpha Divergence Minimization

® |ntroduction to Deep-GPs

@ Deep-GPs using Variational Inference
@ Deep-GPs using Approximate Expectation Propagation
© Deep-GPs using Alpha Divergence Minimization

2/40

Introduction to Multi-class Classification with GPs
Given x; we want to make predictions about y; € {1,...,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

y; =arg max fX(x;) for ke{l,...,C}
k

3/40

Introduction to Multi-class Classification with GPs
Given x; we want to make predictions about y; € {1,...,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

y; =arg max fX(x;) for ke{l,...,C}
k

o ® o e e
8
el
~
S
1%}
~ 3 °
g 84 2 o -
= o ©
—
w0
~
£
[}
o
3
") -
T T T T T T T T T T
4 2 o0 2 4 N 2 4
X X

3/40

Introduction to Multi-class Classification with GPs

Given x; we want to make predictions about y; € {1,...,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max fX(x;)
k

f(x)
1 1 1 1

-0.75 0.00 075 1.50

-1.50

Find p(fly) = p(y[f)p(f)/p(y)

for ke{l,...,C}

o G e a»
©
g o~ -
-
- - CE— -
T T T T T
-4 -2 0 2 4

under p(f<) ~ GP(0, k(-,-)).

3/40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk},le per each class label k.

4/40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk},le per each class label k.

The posterior approximation is q(f) = [p(f|f)q(f)df
a(F) =TTy N (. 29)
= (P, P ()T X' = ()T

where q(f) intuitively approximates p(f|y) and p(f|f) = H,le p(fk\fk).

4/40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk},le per each class label k.

The posterior approximation is q(f) = [p(f|f)q(f)df
a(F) =TTy N (. 29)
= (P, P ()T X' = ()T

where q(f) intuitively approximates p(f|y) and p(f|f) = H,le p(fk\fk).

The number of latent variables goes from CN to CM, with M < N.

4/40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk},le per each class label k.

The posterior approximation is q(f) = [p(f|f)q(f)df
a(F) =TTy N (. 29)
= (P, P ()T X' = ()T

where q(f) intuitively approximates p(f|y) and p(f|f) = H,le p(fk\fk).

The number of latent variables goes from CN to CM, with M < N.

Minibatches and stochastic gradients reduce the cost to O(CM).

4/40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
€ . 1
p(}/i|fi) = (1 - 6)Pi + ﬁ(l - p,-) with p; = k
o 0 otherwise

5/40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
K

€ .
plyilfi) = (1 —€)pi + ﬁ(l —pi) with pj=
- 0 otherwise

Based on minimizing KL(p(f|F)q(f)|p(Ff, fly)):

5/40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
€ . 1
p(}/ilfi) = (1 - 6)Pi + ﬁ(l - p,-) with p; = k
o 0 otherwise

Based on minimizing KL(p(f|F)q(f)|p(Ff, fly)):

N
£(q) =) Eqlog p(yilfi)] — KL(q(F)|p(F))

i=1

5/40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
€ . 1
p(}/ilfi) = (1 - 6)Pi + ﬁ(l - p,-) with p; = k
o 0 otherwise

Based on minimizing KL(p(f|F)q(f)|p(F, fly)):

N
£(q) =) Eqlog p(yilfi)] — KL(q(F)|p(F))

i=1

® Stochastic optimization of q(f) and the hyper-parameters!

5/40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
€ . 1
p(}/ilfi) = (1 - 6)Pi + ﬁ(l - p,-) with p; = k
o 0 otherwise

Based on minimizing KL(p(f|F)q(f)|p(F, fly)):

N
£(q) =) Eqlog p(yilfi)] — KL(q(F)|p(F))

i=1

® Stochastic optimization of q(f) and the hyper-parameters!

® The cost is O(CM?3) (uses quadratures)!

5/40

Expectation Propagation (EP)

Let @ summarize the latent variables of the model.

Approximates

p(0) o< po(0) [TV, £2(6)

with

q(8) o po(0) [Th, £(0)

6/40

Expectation Propagation (EP)

Let @ summarize the latent variables of the model.

Approximates | p(8) o po(8) [TN_; f(0) | with | g(8) o po(0) [TV, 7(8)

p(@) < po(0) fi1(0) f2(6) f3(6) 90) o< po(8) f1(0) f2(6) f5(6)
Cac2cB8c 0 ~ | | | e |

6/40

Expectation Propagation (EP)

Let @ summarize the latent variables of the model.

Approximates | p(8) o po(8) [TN_; f(0) | with | g(8) o po(0) [TV, 7(8)

p(@) < po(0) fi1(0) f2(6) f3(6) 90) o< po(8) f1(0) f2(6) f5(6)
Cac2cB8c 0 ~ | | | e |

The £, are tuned by minimizing the KL divergence

B Pn(9) X fn(g)Hj nﬁ(e)
Dki[pnllq] forn=1,...,N, where a(6) fn(é’)l_[;nﬁw)

6/40

Model Specification (villacampa-Calvo and Hernandez-Lobato, 2017)

Consider that y; = arg max f¥(x;), which gives the likelihood:
K

p(yIf) = TTiey Pilf:) = TT1e TLacsy, ©(F (xi) — £5(x))

7/40

Model Specification (villacampa-Calvo and Hernandez-Lobato, 2017)

Consider that y; = arg max f*(x;), which gives the likelihood:
K
p(YIF) = TTiL; P(ilf) = TTits Tlassy, O(F(xi) = F(x1))

The posterior approximation is also set to be q(f) = [p(f|f)q(f)df.

7/40

Model Specification (villacampa-Calvo and Hernandez-Lobato, 2017)
Consider that y; = arg max f¥(x;), which gives the likelihood:
k

p(yIf) = TTiey Pilf:) = TT1e TLacsy, ©(F (xi) — £5(x))

The posterior approximation is also set to be q(f) = [p(f|f)q(f)df.
We enforce that q(f) ~ p(f|y). The posterior over f is:

_ LpOIR)p(f)dfp() _ [T, J p(yilf)p(F[F)dFilp(F)
p(y) p(y)

where we have used the FITC approximation p(f[f) ~ [T, p(fiF).

p(fly)

7/40

Model Specification (villacampa-Calvo and Hernandez-Lobato, 2017)
Consider that y; = arg max f¥(x;), which gives the likelihood:
k

p(yIf) = TTiey Pilf:) = TT1e TLacsy, ©(F (xi) — £5(x))

The posterior approximation is also set to be q(f) = [p(f|f)q(f)df.
We enforce that q(f) ~ p(f|y). The posterior over f is:

_ LpOIR)p(f)dfp() _ [T, J p(yilf)p(F[F)dFilp(F)
p(y) p(y)

where we have used the FITC approximation p(f[f) ~ [T, p(fiF).

p(fly)

The corresponding likelihood factors are:
—_ . —k
0i0) = [[TTew, © (7" —)] T, plE4F)a
~ [L et > 74 = T] @(0h)

kZyi k#yi

7/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

8/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors ggi,k corresponding to My,

8/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors &i,k corresponding to My,

® Reconstruct the posterior approximation gq.

8/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors (Ei’k corresponding to My,
® Reconstruct the posterior approximation gq.
© Get a noisy estimate of the grad of log Z; w.r.t to each £f and X} 4.

8/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors (;Nﬁi’k corresponding to My,
® Reconstruct the posterior approximation gq.

© Get a noisy estimate of the grad of log Z; w.r.t to each £f and X} 4.
O Update all model hyper-parameters.

8/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors (;Nﬁi’k corresponding to My,
® Reconstruct the posterior approximation gq.

© Get a noisy estimate of the grad of log Z; w.r.t to each £f and X} 4.
O Update all model hyper-parameters.

@ Reconstruct the posterior approximation gq.

8/40

Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors (;Nﬁi’k corresponding to My,
® Reconstruct the posterior approximation gq.

© Get a noisy estimate of the grad of log Z; w.r.t to each £f and X} 4.
O Update all model hyper-parameters.

@ Reconstruct the posterior approximation gq.

If [Mp| < M the cost is O(CM?3).

8/40

a-divergence

Jo (ap(6) + (1 — a)a(6) — p(6)*4(0)'"") d6

Da(plla) = a(l—a)

(Amari, 1985).

9/40

a-divergence

Jo (ap(6) + (1 — a)a(6) — p(6)*4(0)'"") d6

Da(pllq) =

a(l —a)
(Amari, 1985).
«
q tends to fit a mode of p q tends to fit p globally
T T T
0 0.5 1
q
p P P p
% J/\ qu\ q
o= —00 a=0 a=0.5 o= o = 00

Figure source: (Minka, 2005).

9/40

a-divergence

Jy (ap(8) + (1 = a)a(6) — p(6)*q(6)'~*) dB

Da(pllq) =

a(l —a)
(Amari, 1985).
«
q tends to fit a mode of p q tends to fit p globally
T T T
a=0

Variational Expectation
Bayes (VB) propagation (EP)

KL(q|lp) KL(pllq)

Figure source: (Minka, 2005).

9/40

Local a-divergence minimization (Power EP)

Approximates

(Minka, 2004)

p(8) o< po(0) [Ty f(6)

with

q(0) o< po(0) [T, #(0)

10/40

Local a-divergence minimization (Power EP)

Approximates | p(8) o po(8) [TN_; () | with | q(8) o po(0) TV, 7(8)

(Minka, 2004)

p(0) < po(0) f1(0) f2(0) f3(0) q®0) o< po(0) f1(0) f2(0) f3(0)
[—r S e v R [1L Il Il]

10/40

Local a-divergence minimization (Power EP)

Approximates | p(8) o po(8) [TN_; () | with | q(8) o po(0) TV, 7(8)

(Minka, 2004)

p(0) < po(0) f1(0) f2(0) f3(0) q®0) o< po(0) f1(0) f2(0) f3(0)
[—r S e v R | 1L Il Il]

The f, are tuned by minimizing the local a-divergences

pn(0)

D f =1,...,N h
a[anq] orn)) 9 wnere q(e)

X
X

10/40

a-divergence minimization via KL minimization

Power EP steps to refine fo:

11/40

a-divergence minimization via KL minimization

Power EP steps to refine fo:

©® Compute cavity: ¢*" q/fna.

11/40

a-divergence minimization via KL minimization

Power EP steps to refine fo:
©® Compute cavity: ¢*" q/fna.

® Minimize KL(Z;1£%¢*"||q) to find g"".

11/40

a-divergence minimization via KL minimization
Power EP steps to refine fo:

©® Compute cavity: ¢*" q/fna.

® Minimize KL(Z;1£%¢*"||q) to find g"".

© Update factor: 7"V = (annew/q\an)é-

11/40

a-divergence minimization via KL minimization

Power EP steps to refine fo:
©® Compute cavity: ¢*" q/fna.
® Minimize KL(Z;1£%¢*"||q) to find g"".
© Update factor: 7"V = (an“ew/q\o‘")i.

At convergence the moments of = Z,jlfnaq\a" and g match!

11/40

a-divergence minimization via KL minimization

Power EP steps to refine fo:
©® Compute cavity: ¢*" q/fna.
® Minimize KL(Z;1£%¢*"||q) to find g"*"
© Update factor: 7"V = (an“ew/q\o‘")i.

At convergence the moments of = Z,jlfn“q\a" and g match!

Vi Dalpnlla] = Za (Eq[s(0)] — E5[s(0)]) o< Vi KL[B||d]

where p o (f, q\”)a 1—o — faq\a”

11/40

a-divergence minimization via KL minimization

Power EP steps to refine fo:
©® Compute cavity: ¢*" q/fna.
® Minimize KL(Z;1£%¢*"||q) to find g"*"
© Update factor: 7"V = (an“ew/q\o‘")i.

At convergence the moments of = Z,jlfn“q\a" and g match!
Zs .
Vg Dalpallgl = = (Eq[s(6)] - E5[s(0)]) < Vy, KL[B]|q]
where p o (f, q\”)a 1—o — faq\a”

At convergence V, D, [ps||q] equals zero!

11/40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

N
1 f(0)\
log Zpep = log Zg — log Zprior + Z o log Eq [(F E9;>] ’
n=1 n

12/40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

N
1 £(0)\°
log Zpep = log Zq — log Zprior + — log Eq |:(= > :|)
2o = o)

The power-EP solution for g can be obtained by solving

N

max min log Zpgp subject to q(0@) = po(O) H n(6) .

q flv---ny n=1

12/40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

N
1 £(0)\°
log Zpep = log Zq — log Zprior + — log Eq |:(= > :|)
2o = o)

The power-EP solution for g can be obtained by solving

N

max min log Zpgp subject to q(0@) = po(O) H n(6) .

q flv---ny n=1

Solved with double-loop algorithm (Heskes, 2002).

12/40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

N
1 £(0)\°
log Zpep = log Zq — log Zprior + — log Eq |:(= > :|)
2o = o)

The power-EP solution for g can be obtained by solving

N

max min log Zpgp subject to q(0@) = po(O) H n(6) .

q flv---ny n=1

Solved with double-loop algorithm (Heskes, 2002). Too slow in practice!

12/40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

p(@) o< po(0) f1(6) f2(0) f3(0) a(0) o< po(8) f1(6) f2(8) f3(6)

[— S S g I | | | —

We tie the factor
approximations
f(0)N

p(0) < po(0) f1(0) f2(0) f3(0) q(0) o< po() f

[— s S g I I | e

13/40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

p(0) < po(8) f1(8) f2(0) f3(0) a®) o< po(0) f1(0) f2(0) f3(0)
— S v | | | | —

We tie the factor
approximations + + +
p(@) o< po(6) f1(0) f2(0) f5(0) q(6) < po(6) fen

[— s S g I I | o e

® max min problem — max problem, no double-loop needed!
9 f,..fy q

13/40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

p(0) < po(8) f1(8) f2(0) f3(0) a®) o< po(0) f1(0) f2(0) f3(0)
— S v | | | | —

We tie the factor
approximations + + +
p(@) o< po(6) f1(0) f2(0) f5(0) q(6) < po(6) fen

[— s S g I I | o e

® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).

13/40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

p(8) o< po(6) f1(0) f2(0) f3(0) 90) o< po(8) f1(6) f2(0) f3(6)
[— 5 S g IR |) | |

[|
We tie the factor
approximations + + +
p(@) o< po(6) f1(0) f2(0) f5(0) q(6) < po(6) fen

[— s S g I I | o e

® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).

¢ Standard optimization tools can be used (stochastic gradients).

13/40

Refined Prior Approximate Power EP (RPAPEP)

As oo — 0 the PEP and APEP solution converges to a VI solution.

14 /40

Refined Prior Approximate Power EP (RPAPEP)

As o — 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

14 /40

Refined Prior Approximate Power EP (RPAPEP)

As o — 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of g:

APEP or PEP \"|

q x pofN g = Gaussian distribution

14 /40

Refined Prior Approximate Power EP (RPAPEP)

As o — 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of g:

APEP or PEP \"|

q x pofN g = Gaussian distribution

To avoid this we let g « fN and process the prior too!

14 /40

Refined Prior Approximate Power EP (RPAPEP)

As o — 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of g:

APEP or PEP \"|

q x pofN g = Gaussian distribution

To avoid this we let g « fN and process the prior too!

N
1 f(0)\
log Zpgp = log Z, + —logE K - >] ,
’ nz—;)o‘ L\ (o)

14 /40

Experiments: UCI Datasets

Dataset F#lInstances #Attributes #Classes
Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3

15 /40

UCI Datasets

Experiments

4
3

rank

o
]
v
-~
=)
-8 ©
=
w o<
o 2
< °®
re}
KN
=]
o
S
5]
) © ~ © ©
yues pooyyayi Boj sanebau 3sa) uespy
o
S
0
-~
=]
©
] 25
o =3
re)
]
o
o
=]
) . . .o
@ ~ © ©

yues pooyi a1l Boj annebau isa) ueapy

RPAPEP
0.50 0.75 1.00
alpha

0.25

o
S
(=)

[@© ~ © [t}
yuea pooyiay1| boj annebau isa) ueapy

16 /40

Toy Problem: Inducing Point Locations

a—0 a—02 a—04 a—05 a=06 a=08 a=1

. . K L .

; : i !
. R - | -l
AR : N . .
K : R o |

PEP

APEP

ol .
e, v R
DA .
- e Y. U .
\ ‘
h] .
. E 4 ~
) . b

. Ry
‘-.J I g

RPAPEP

17/40

MNIST Dataset

10 classes, 60,000 training instances.

APEP
o 2:30° o 5 230 Hpna
2 — 2 -
2186 o 2186 o
E —o E] —o
—u e —os
2142 -~ =142 -~
I —os I —os
g e g o
Soos o J0.98- o
7 —o 7 —o
£ 0.54- —os £ o054 —o
2 e 2 e
2010 - 2010 -
1e+03 1e+05 100 10000
Training Time in Seconds in a Log10 Scale Training Time in Seconds in a Log10 Scale
RPAPEP

2.30°
°
o
2186
2142
o
So.98-
3
2054
&
2010

160 10000
Training Time in Seconds in a Log10 Scale

18/40

Airline Delays

3 classes, 2 million training instances.

PEP APEP
5 120 o o 120 o
3 —o <] —o
2115 —ou 2115, —ou
g s g s
? 1.10- —ot T'_ 1.10- -4
5 —os N —os
S10s — S10s o
3 —os 3 —os
= 1.00- —os = 1.00- —o
& -1 & -
8 - 3 -
20095 | | i 2095 | | i

100 1000 10000 100 1000 10000

Training Time in Seconds in a Log10 Scale Training Time in Seconds in a Log10 Scale

RPAPEP
1.20-

[
N
a

[
N
e

[
=3
<

Neg. Test Log-Likelihood
5
a

o
©
a

0 00 0
Training Time in Seconds in a Log10 Scale

19/40

Conclusions so far...

® We have described a collection of methods to approximately
minimize a-divergences in MGPC.

20/ 40

Conclusions so far...

® We have described a collection of methods to approximately
minimize a-divergences in MGPC.

e Efficient training and memory usage with cost O(CM?3).

20/40

Conclusions so far...

® We have described a collection of methods to approximately
minimize a-divergences in MGPC.

e Efficient training and memory usage with cost O(CM?3).

® Extensive experimental comparisons.

20/ 40

Conclusions so far...

We have described a collection of methods to approximately
minimize a-divergences in MGPC.

Efficient training and memory usage with cost O(CM?3).

Extensive experimental comparisons.

® o = 0.5 gives over-all good results in the experiments.

20/ 40

Conclusions so far...

We have described a collection of methods to approximately
minimize a-divergences in MGPC.

Efficient training and memory usage with cost O(CM?3).
® Extensive experimental comparisons.
® o = 0.5 gives over-all good results in the experiments.

® o = 0.5 sometimes outperforms VB or EP methods for MGPC.

20/40

Conclusions so far...

We have described a collection of methods to approximately
minimize a-divergences in MGPC.

Efficient training and memory usage with cost O(CM?3).
® Extensive experimental comparisons.
® o = 0.5 gives over-all good results in the experiments.

® o = 0.5 sometimes outperforms VB or EP methods for MGPC.

VB sometimes gives bad test log-likelihoods.

20 /40

Motivation for Deep Gaussian Processes

Target function

T2

21/40

Motivation for Deep Gaussian Processes

GP fit Target function

&),

T T

€2
€2

21/40

Motivation for Deep Gaussian Processes

GP fit Target function DGP fit

&),

Ty I

€2
€2

21/40

How do deep GPs work?

X1, X2
— ~

fi1(x1, x2) fia(x1, x2) ‘

How do deep GPs work?

X1, X2
— ~

fi1(x1, x2) fia(x:

y = g(x1,x2)+ noise

1-1— noise
y

How do deep GPs work?

X1, X2
— ~

fi1(x1, x2) fia(x1, x2) ‘

y = g(x1,x2)+ noise

1

fi1, fiz, o ~ GP(0, C(-,-))

11
1-1— noise
y 22/40

Deep GPs as Deep Neural Networks

23/40

Why deep GPs?

Advantages:
® yseful input warping: automatic, nonparametric kernel design
® repair damage done by sparse approximations to GPs

® more accurate predictions and better uncertainty estimates

24 /40

Why deep GPs?

Advantages:
® yseful input warping: automatic, nonparametric kernel design
® repair damage done by sparse approximations to GPs

® more accurate predictions and better uncertainty estimates

Drawbacks:
® require complicated approximate inference methods

® high computational cost

24 /40

Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(fH)p(F)p(f?) p(YIF',F2, 3, X)

p(f*, £, F2|Y) =
p(Y)

® GP priors
e | ikelihood function

® Marginal likelihood

But the posterior p(f!, 2, f3|Y) is intractable.

25 /40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.

26 /40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.

If uis known, then p(f(x)|u) = N(f(x)|mx, v), where
my = k, xKz x4

~1
Vy = kx7x - kx7XKx ka7x .

26 /40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.

If uis known, then p(f(x)|u) = N(f(x)|mx, v), where
my = k, xKz x4
W = kxx — Ky 5Ky ks -
If p(u) = N (ulm,S), then p(f(x)) = N(f(x)|mx, v), where
my = kx7)—(K)?(’1)-(m,

Ve = Kyx — kx7)—(K)?(’1)-(k)—(7x + kx7,—(K)?(71)-(SK)?(71)-(k,—(7x)

26 /40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.

If uis known, then p(f(x)|u) = N(f(x)|mx, v), where
my = k, xKz x4
W = kxx — Ky 5Ky ks -
If p(u) = N (ulm,S), then p(f(x)) = N(f(x)|mx, v), where
my = kx7)—(K)?(’1)-(m,
W = kx — Ky 5K ks + ko kK 3 SK xkox -
Given u or a Gaussian for u, f is fully specified!

26 /40

Deep Gaussian Process Joint Distribution.

Likelihood
——N—

N
p(y, {u', £}1) = [] p(ilf) x
i=1

L
[T p(Fu’, X)) p(u'[X")

/=1

Deep GP prior

27 /40

Prob. Graphical Model and Posterior Approx.

28 /40

Prob. Graphical Model and Posterior Approx.

N (u?|msy, S2)

® Fixed
® Tuneabl

28 /40

Variational Inference for Deep GPs

Based on minimizing KL(g({u’,f'}L_)|p({u’,f}L_,]y))

(Salimbeni, 2017)
20/40

Variational Inference for Deep GPs
Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing:

1Y, p(yil 1) TT 1y P T p(u')
[T, ptEatyg(u’)

N L
= >~ Eqllog plyilf)] ~ 3 KL(a(u)lp(u)).
i=1 I=1

L =1IEq |log

(Salimbeni, 2017)
2940

Variational Inference for Deep GPs
Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing:

1Y, p(yil 1) TT 1y P T p(u')
[T, ptEatyg(u’)

N L
= >~ Eqllog plyilf)] ~ 3 KL(a(u)lp(u)).
i=1 I=1

L =1IEq |log

e Suitable for stochastic optimization.

(Salimbeni, 2017)
2940

Variational Inference for Deep GPs
Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing:

1Y, p(yil 1) TT 1y P T p(u')
[T, ptEatyg(u’)

N L
= >~ Eqllog plyilf)] ~ 3 KL(a(u)lp(u)).
i=1 I=1

L =1IEq |log

e Suitable for stochastic optimization.

® The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
2940

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y;|fl).

(Bui, 2016)

30/40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y,-|f,-L).

The EP approximation to the evidence p(y) is given by

& f(0)
log Zgp = log Zy — log Zprior + Z log Eg [(f)] ,
n=1 fn(e)

(Bui, 2016)

30/40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y;|f!).

The EP approximation to the evidence p(y) is given by

& fa(6)
log Zgp = log Zy — log Zprior + Z log Eg [(l’)] ,

n=1 f”(o)
The EP solution for g can be obtained by solving
N ~
max min log Zgp subject to q(0) = po(0) H n(0) .
T oy n=1

(Bui, 2016)

30/40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y;|f!).

The EP approximation to the evidence p(y) is given by

& fa(6)
log Zgp = log Zy — log Zprior + Z log Eg [(l’)] ,

n=1 f”(o)
The EP solution for g can be obtained by solving
N ~
max min log Zgp subject to q(0) = po(0) H n(0) .
T oy n=1

Can be solved with a double-loop algorithm.

(Bui, 2016)

30/40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y;|f!).

The EP approximation to the evidence p(y) is given by

& fa(6)
log Zgp = log Zy — log Zprior + Z log Eg [(l’)] ,

n=1 f”(o)
The EP solution for g can be obtained by solving
N ~
max min log Zgp subject to q(0) = po(0) H n(0) .
T oy n=1

Can be solved with a double-loop algorithm. Too slow in practice!
(Bui, 2016)

30/40

Approximate Expectation Propagation

p(6) o< po(8) f1(0) f2(0) f3(6) q@) o po(0) f1(8) f2(8) f3(0)

| —Tr S e Sl [11 Il Il

We tie the factor
approximations
f(0)N

p(0) x po(8) f1(0) f2(8) f3(0) q(8) o< po(0) f

[— S e I | | —

31/40

Approximate Expectation Propagation

p(@) < po(0) f1(6) f2(8) f3(0) q(0) < po(8) fi(6) f2(0) f3(0)
CCIeeB A ~ I | | | —

We tie the factor
approximations + + +
p(8) o< po(8) f1(0) f2(0) f3(6) q(0) < po(0) fen

[—r= S S g I | s | s | |

® max min problem — max problem, no double-loop needed!
9 f,..fy q

31/40

Approximate Expectation Propagation

p(@) < po(0) f1(6) f2(8) f3(0) q(0) < po(8) fi(6) f2(0) f3(0)
CCIeeB A ~ I | | | —

We tie the factor
approximations + + +
p(8) o< po(8) f1(0) f2(0) f3(6) q(0) < po(0) fen

[—r= S S g I | s | s | |

® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).

31/40

Approximate Expectation Propagation

p(0) o< po(8) f1(0) f2(0) f3(0) a@)x po(8) fi1(6) f2(0) f3(0)
[— S S e |] s |

[|
We tie the factor
approximations + + +
p(8) o< po(8) f1(0) f2(0) f3(6) q(0) < po(0) fen

[—r= S S g | | o e

® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).

¢ Standard optimization tools can be used (stochastic gradients).

31/40

Approximate EP

One only needs to optimize

- £()
log Zep = log Zg — log Zprior + » _ log Eq K L >] .

n=1

32/40

Approximate EP

One only needs to optimize

. (6)
log Zep = log Zy — log Zprior + Z log E, K ;(9) >] .

n=1

But this requires integrating the exact likelihood factors (intractable).

32/40

Approximate EP

One only needs to optimize

. f2(0)
log Zep = log Zg — log Zprior + » _ log Eq [(L)] .
n=1 f(e)

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

32/40

Approximate EP

One only needs to optimize

. f2(0)
log Zep = log Zg — log Zprior + » _ log Eq [(L)] .
n=1 f(e)

But this requires integrating the exact likelihood factors (intractable).
The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

32/40

Approximate EP

One only needs to optimize

- £()
log Zep = log Zg — log Zprior + » _ log Eq K ;(9) >] .

n=1
But this requires integrating the exact likelihood factors (intractable).
The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!

32/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

33/40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33/40

a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>a]
log Zgp = log Z, — lo Zrir—l——EIOE = .
0og Zgp g Lq € Zprio o 2 g q[(f(@)

34/40

a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>a]
log Zgp = log Z, — lo Zrir—l——EIOE = .
0og Zgp g Lq € Zprio o 2 g q[(f(@)

But this requires integrating the exact likelihood factors (intractable).

34/40

a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>o‘]
log Zep = log Z, — log Zyrior + — log E = .
g Zep = log Zy — log Zyio a;quf(e)

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.

34/40

a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>a]
log Zep = log Z, — log Zyrior + — log E = .
0g £EP g Lq g ZLprio a; g q[<f(9)

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.
Expected to give better results than the Gaussian approximation!

34/40

Monte Carlo Approximation

Figure by T. Bui s 4 —2 0 2 4 6

The predictive distribution with random Gaussian inputs may be
very different from Gaussian!

35/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

36/40

Monte Carlo Approximation

The required expectation is approximated as:

a S
1 f(6)\"] 1 1 (L
alogEq |:(f(0)> :| ~ alog (S sz_;p(}/l’f},s)>
&,
(67

(07

37/40

Monte Carlo Approximation

The required expectation is approximated as:

a S
1 n(0) 1 1 1L
alogEq |:(f(0)> :| ~ alog (S sz_;p(}/l’f;',s)>
& S
(67 «

8q = Log. Normalizer of q.

8qa, = Log. Normalizer of the approximate PEP cavity.

37/40

Monte Carlo Approximation

The required expectation is approximated as:

255 | () |

Q

1 1S
1 1 1L
” log (5 SE_I P(y,!f,,s)>

8, Ea
(6%

Q

8q = Log. Normalizer of q.

8qa, = Log. Normalizer of the approximate PEP cavity.

This is a biased estimate, but the bias goes to zero as the number
of samples S increases.

37/40

Expected Benefits of a-divergence Minimization
Similar to those of Bayesian neural networks...

Predictions alpha = 0.5 Predictions alpha = 0

Training Data for Bi-modal Problem

Predictions alpha = 0

Predictions alpha = 0.5

(Depeweg et al., 2016)
38/40

Conclusions and Future Work

® Deep GP are flexible models for machine learning.

39/40

Conclusions and Future Work

® Deep GP are flexible models for machine learning.

® (Can alleviate some of the limitations of standard GPs.

39 /40

Conclusions and Future Work

® Deep GP are flexible models for machine learning.
® (Can alleviate some of the limitations of standard GPs.

® Several ways of training them, including VI or AEP.

39 /40

Conclusions and Future Work

Deep GP are flexible models for machine learning.

Can alleviate some of the limitations of standard GPs.

Several ways of training them, including VI or AEP.

DGPs can be trained by approximately minimizing a-divergences.

39 /40

Conclusions and Future Work

Deep GP are flexible models for machine learning.

Can alleviate some of the limitations of standard GPs.

Several ways of training them, including VI or AEP.

DGPs can be trained by approximately minimizing a-divergences.

a-divergence minimization may outperform VI or AEP methods.

39/40

Conclusions and Future Work

Deep GP are flexible models for machine learning.

Can alleviate some of the limitations of standard GPs.

Several ways of training them, including VI or AEP.

DGPs can be trained by approximately minimizing a-divergences.

a-divergence minimization may outperform VI or AEP methods.

Future Work:

® Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39/40

Thank you for your attention!

References |

® Bauer, M., van der Wilk, M., and Rasmussen, C. E. Understanding probabilistic sparse
Gaussian process approximations. NIPS 29, pp. 1533-1541. 2016.

® Chai, K. M. A. Variational multinomial logit Gaussian process. JMLR, 13:1745-1808,
2012.

® Girolami, M. and Rogers, S. Variational Bayesian multinomial probit regression with
Gaussian process priors. Neural Computation, 18:1790-1817, 2006.

® Hensman, J., Matthews, A. G., Filippone, M., and Ghahramani, Z. MCMC for
variationally sparse Gaussian processes. NIPS 28, pp. 1648-1656. 2015.

® Hernindez-Lobato, D. and Herndndez-Lobato, J. M. Scalable Gaussian process
classification via expectation propagation. AISTATS, pp. 168-176, 2016.

® Kim, H.-C. and Ghahramani, Z. Bayesian Gaussian process classification with the
EM-EP algorithm. IEEE PAMI, 28, 1948-1959, 2006.

® Li, Y., Hernandez-Lobato, J. M., and Turner, R. E. Stochastic expectation propagation.
NIPS 28, pp. 2323-2331. 2015

® Naish-Guzman, A. and Holden, S. The generalized FITC approximation. NIPS 20, pp.
1057-1064. 2008.

® Riihimaki, J., Jylanki, P., and Vehtari, A. Nested expectation propagation for Gaussian
process classification with a multinomial probit likelihood. JMLR, 14, 75-109, 2013.

® Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. NIPS
18, pp. 1257-1264, 2006.

® Williams, C. K. I. and Barber, D. Bayesian classification with Gaussian processes. |[EEE
PAMI, 20,1342-1351, 1998.

40 /40

References |1

® Damianou, A., and Lawrence, N. Deep gaussian processes. In Artificial Intelligence and
Statistics (pp. 207-215), 2013.

® Bui, Thang, et al. Deep gaussian processes for regression using approximate expectation
propagation. En International Conference on Machine Learning. 2016. p. 1472-1481.

® Salimbeni, H., and Deisenroth, M. (2017). Doubly stochastic variational inference for
deep gaussian processes. In Advances in Neural Information Processing Systems (pp.
4588-4599).

® Hernandez-Lobato, J., Li, Y., Rowland, M., Bui, T., Hernandez-Lobato, D. and Turner,
R.. (2016). Black-Box Alpha Divergence Minimization. Proceedings of The 33rd
International Conference on Machine Learning, in PMLR 48:1511-1520

® Depeweg, S., Hernndez-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2016). Learning
and policy search in stochastic dynamical systems with bayesian neural networks. arXiv
preprint arXiv:1605.07127.

® T. Bui. Efficient Deterministic Approximate Bayesian Inference for Gaussian Process
Models. PhD thesis, 2017.

® Duvenaud, D., Rippel, O., Adams, R., and Ghahramani, Z. (2014, April). Avoiding
pathologies in very deep networks. In Artificial Intelligence and Statistics (pp. 202-210).

40 /40

Specific Application of PEP to Multi-class GPC

The likelihood factors are the same as those of the VI approach:

€

p(yilfi) = (1 —€e)pi + c_ 1(1 —pi) with p;= {

The posterior approximation is:

q(f.) = p(f|F)q(F)

At each step of PEP we have to update ¢; to minimize:

KL {ptrtt)m(eH L | p(f|f)q(f)]

1

Done by matching the moments of f! Requires quadratures!

0 otherwise

1 if y;=argmax fK(x;)
K

40 /40

