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Introduction to Multi-class Classification with GPs

Given xi we want to make predictions about yi ∈ {1, . . . ,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max
k

f k(xi ) for k ∈ {1, . . . ,C}
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Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk}Ck=1 per each class label k .

The posterior approximation is q(f) =
∫
p(f|f)q(f)df

q(f) =
∏C

k=1N (f
k |µk ,Σk)

f
k

= (f k(xk1), . . . , f k(xkM))T X
k

= (xk1 , . . . , x
k
M)T

where q(f) intuitively approximates p(f|y) and p(f|f) =
∏C

k=1 p(fk |fk).

The number of latent variables goes from CN to CM, with M � N.

Minibatches and stochastic gradients reduce the cost to O(CM).
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Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi ) = (1− ε)pi +
ε

C − 1
(1− pi ) with pi =

1 if yi = arg max
k

f k(xi )

0 otherwise

Based on minimizing KL(p(f|f)q(f)|p(f, f|y)):

L(q) =
N∑
i=1

Eq [log p(yi |fi )]− KL(q(f)|p(f))

• Stochastic optimization of q(f) and the hyper-parameters!

• The cost is O(CM3) (uses quadratures)!
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Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

6 / 40



Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

6 / 40



Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

6 / 40



Model Specification (Villacampa-Calvo and Hernández-Lobato, 2017)

Consider that yi = arg max
k

f k(xi ), which gives the likelihood:

p(y|f) =
∏N

i=1 p(yi |fi ) =
∏N

i=1

∏
k 6=yi

Θ(f yi (xi )− f k(xi ))

The posterior approximation is also set to be q(f) =
∫
p(f|f)q(f)df.

We enforce that q(f) ≈ p(f|y). The posterior over f is:

p(f|y) =

∫
p(y|f)p(f|f)dfp(f)

p(y)
≈

[
∏N

i=1

∫
p(yi |fi )p(fi |f)dfi ]p(f)

p(y)

where we have used the FITC approximation p(f|f) ≈
∏N

i=1 p(fi |f).

The corresponding likelihood factors are:

φi (f) =

∫ [∏
k 6=yi

Θ
(
f yii − f ki

)]∏C
k=1 p(f ki |f

k
)dfi

≈
∏
k 6=yi

p(f yii > f ki ) =
∏
k 6=yi

Φ(αk
i )
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Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).
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α-divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α) .

(Amari, 1985).

Figure source: (Minka, 2005).
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Expectation
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Local α-divergence minimization (Power EP)

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)
(Minka, 2004)

The f̃n are tuned by minimizing the local α-divergences

Dα[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.
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α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!
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n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40



Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

logZPEP = logZq − logZprior +
N∑

n=1

1

α
log Eq

[(
fn(θ)

f̃n(θ)

)α]
,

The power-EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZPEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Solved with double-loop algorithm (Heskes, 2002). Too slow in practice!
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Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

We tie the factor 
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).
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Refined Prior Approximate Power EP (RPAPEP)

As α→ 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of q:

APEP or PEP VI

q ∝ p0f̃
N q ≡ Gaussian distribution

To avoid this we let q ∝ f̃ N and process the prior too!

logZPEP = logZq +
N∑

n=0

1

α
log Eq

[(
fn(θ)

f̃ (θ)

)α]
,
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Experiments: UCI Datasets

Dataset #Instances #Attributes #Classes
Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3
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Experiments: UCI Datasets
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Toy Problem: Inducing Point Locations

α→ 0 α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1
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MNIST Dataset

10 classes, 60,000 training instances.
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Airline Delays

3 classes, 2 million training instances.
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Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.
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Motivation for Deep Gaussian Processes
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How do deep GPs work?
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y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))
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Deep GPs as Deep Neural Networks
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Why deep GPs?

Advantages:

• useful input warping: automatic, nonparametric kernel design

• repair damage done by sparse approximations to GPs

• more accurate predictions and better uncertainty estimates

Drawbacks:

• require complicated approximate inference methods

• high computational cost

24 / 40



Why deep GPs?

Advantages:

• useful input warping: automatic, nonparametric kernel design

• repair damage done by sparse approximations to GPs

• more accurate predictions and better uncertainty estimates

Drawbacks:

• require complicated approximate inference methods

• high computational cost

24 / 40



Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(f1, f2, f3|Y) =
p(f1)p(f2)p(f3) p(Y|f1, f2, f3,X)

p(Y)

• GP priors

• Likelihood function

• Marginal likelihood

But the posterior p(f1, f2, f3|Y) is intractable.
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Inducing Points Representation

Latent variables: from O(N) to O(M), with M � N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x)|u) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

u ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x .

If p(u) = N (u|m,S), then p(f (x)) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

m ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x + kx,X̄K−1
X̄,X̄

SK−1
X̄,X̄

kX̄,x .

Given u or a Gaussian for u, f is fully specified!
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Deep Gaussian Process Joint Distribution.

p(y, {ul , f l}Li=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li )×

L∏
l=1

p(f l |ul ,X
l
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior
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Prob. Graphical Model and Posterior Approx.

q({f l ,ul}Ll=1) =
L∏

l=1

p(f l |ul) q(ul)

• Fixed
• Tuneable
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Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing:

L = Eq

[
log

∏N
i=1 p(yi |f Li )

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li )]−
L∑

l=1

KL(q(ul)|p(ul)) .

• Suitable for stochastic optimization.

• The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
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Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(yi |f Li ).

The EP approximation to the evidence p(y) is given by

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃n(θ)

)]
,

The EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Can be solved with a double-loop algorithm. Too slow in practice!

(Bui, 2016)
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Approximate Expectation Propagation

We tie the factor 
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).
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Approximate EP

One only needs to optimize

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃ (θ)

)]
.

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!
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Iterative Gaussian Approximations

This approach allows to approximate the required expectations!
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α-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

logZEP = logZq − logZprior +
1

α

N∑
n=1

log Eq

[(
fn(θ)

f̃ (θ)

)α]
.

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.

Expected to give better results than the Gaussian approximation!
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Monte Carlo Approximation
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Figure by T. Bui

The predictive distribution with random Gaussian inputs may be
very different from Gaussian!
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Monte Carlo Approximation
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Monte Carlo Approximation

The required expectation is approximated as:

1

α
logEq

[(
fn(θ)

f̃ (θ)

)α]
≈ 1

α
log

(
1

S

S∑
s=1

p(yi |f Li ,s)

)
− gq
α

+
gqαcav

α

gq ≡ Log. Normalizer of q.

gqαcav
≡ Log. Normalizer of the approximate PEP cavity.

This is a biased estimate, but the bias goes to zero as the number
of samples S increases.
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Expected Benefits of α-divergence Minimization

Similar to those of Bayesian neural networks...

(Depeweg et al., 2016)
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Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40



Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40



Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40



Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40



Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40



Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40



Thank you for your attention!
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Specific Application of PEP to Multi-class GPC

The likelihood factors are the same as those of the VI approach:

p(yi |fi ) = (1− ε)pi +
ε

C − 1
(1− pi ) with pi =

1 if yi = arg max
k

f k(xi )

0 otherwise

The posterior approximation is:

q(f, f) = p(f|f)q(f)

At each step of PEP we have to update φ̃i to minimize:

KL

[
p(yi |fi )αp(f|f)

q(f)

φ̃αi
|| p(f|f)q(f)

]

Done by matching the moments of f! Requires quadratures!
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