
Approximate Inference in Multi-class and Deep
Gaussian Processes by Minimizing Alpha

Divergences

Daniel Hernández–Lobato
Computer Science Department

Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es

Joint work with
Carlos Villacampa-Calvo and
Gonzalo Hernández-Muñoz

1 / 40

http://dhnzl.org
mailto:daniel.hernandez@uam.es

Outline

• Introduction to Multi-class GPs

1 Multi-class GPs using Variational Inference

2 Multi-class GPs using Expectation Propagation

3 Multi-class GPs using Alpha Divergence Minimization

• Introduction to Deep-GPs

1 Deep-GPs using Variational Inference

2 Deep-GPs using Approximate Expectation Propagation

3 Deep-GPs using Alpha Divergence Minimization

2 / 40

Introduction to Multi-class Classification with GPs

Given xi we want to make predictions about yi ∈ {1, . . . ,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max
k

f k(xi) for k ∈ {1, . . . ,C}

−4 −2 0 2 4

−1
.5

0
−0

.7
5

0.
00

0.
75

1.
50

x

f(x
)

−4 −2 0 2 4

1
2

3

x

La
be

ls

Find p(f|y) = p(y|f)p(f)/p(y) under p(fk) ∼ GP(0, k(·, ·)).

3 / 40

Introduction to Multi-class Classification with GPs

Given xi we want to make predictions about yi ∈ {1, . . . ,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max
k

f k(xi) for k ∈ {1, . . . ,C}

−4 −2 0 2 4

−1
.5

0
−0

.7
5

0.
00

0.
75

1.
50

x

f(x
)

−4 −2 0 2 4
1

2
3

x

La
be

ls

Find p(f|y) = p(y|f)p(f)/p(y) under p(fk) ∼ GP(0, k(·, ·)).

3 / 40

Introduction to Multi-class Classification with GPs

Given xi we want to make predictions about yi ∈ {1, . . . ,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max
k

f k(xi) for k ∈ {1, . . . ,C}

−4 −2 0 2 4

−1
.5

0
−0

.7
5

0.
00

0.
75

1.
50

x

f(x
)

−4 −2 0 2 4
1

2
3

x

La
be

ls

Find p(f|y) = p(y|f)p(f)/p(y) under p(fk) ∼ GP(0, k(·, ·)).

3 / 40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk}Ck=1 per each class label k .

The posterior approximation is q(f) =
∫
p(f|f)q(f)df

q(f) =
∏C

k=1N (f
k |µk ,Σk)

f
k

= (f k(xk1), . . . , f k(xkM))T X
k

= (xk1 , . . . , x
k
M)T

where q(f) intuitively approximates p(f|y) and p(f|f) =
∏C

k=1 p(fk |fk).

The number of latent variables goes from CN to CM, with M � N.

Minibatches and stochastic gradients reduce the cost to O(CM).

4 / 40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk}Ck=1 per each class label k .

The posterior approximation is q(f) =
∫
p(f|f)q(f)df

q(f) =
∏C

k=1N (f
k |µk ,Σk)

f
k

= (f k(xk1), . . . , f k(xkM))T X
k

= (xk1 , . . . , x
k
M)T

where q(f) intuitively approximates p(f|y) and p(f|f) =
∏C

k=1 p(fk |fk).

The number of latent variables goes from CN to CM, with M � N.

Minibatches and stochastic gradients reduce the cost to O(CM).

4 / 40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk}Ck=1 per each class label k .

The posterior approximation is q(f) =
∫
p(f|f)q(f)df

q(f) =
∏C

k=1N (f
k |µk ,Σk)

f
k

= (f k(xk1), . . . , f k(xkM))T X
k

= (xk1 , . . . , x
k
M)T

where q(f) intuitively approximates p(f|y) and p(f|f) =
∏C

k=1 p(fk |fk).

The number of latent variables goes from CN to CM, with M � N.

Minibatches and stochastic gradients reduce the cost to O(CM).

4 / 40

Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk}Ck=1 per each class label k .

The posterior approximation is q(f) =
∫
p(f|f)q(f)df

q(f) =
∏C

k=1N (f
k |µk ,Σk)

f
k

= (f k(xk1), . . . , f k(xkM))T X
k

= (xk1 , . . . , x
k
M)T

where q(f) intuitively approximates p(f|y) and p(f|f) =
∏C

k=1 p(fk |fk).

The number of latent variables goes from CN to CM, with M � N.

Minibatches and stochastic gradients reduce the cost to O(CM).

4 / 40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi) = (1− ε)pi +
ε

C − 1
(1− pi) with pi =

1 if yi = arg max
k

f k(xi)

0 otherwise

Based on minimizing KL(p(f|f)q(f)|p(f, f|y)):

L(q) =
N∑
i=1

Eq [log p(yi |fi)]− KL(q(f)|p(f))

• Stochastic optimization of q(f) and the hyper-parameters!

• The cost is O(CM3) (uses quadratures)!

5 / 40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi) = (1− ε)pi +
ε

C − 1
(1− pi) with pi =

1 if yi = arg max
k

f k(xi)

0 otherwise

Based on minimizing KL(p(f|f)q(f)|p(f, f|y)):

L(q) =
N∑
i=1

Eq [log p(yi |fi)]− KL(q(f)|p(f))

• Stochastic optimization of q(f) and the hyper-parameters!

• The cost is O(CM3) (uses quadratures)!

5 / 40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi) = (1− ε)pi +
ε

C − 1
(1− pi) with pi =

1 if yi = arg max
k

f k(xi)

0 otherwise

Based on minimizing KL(p(f|f)q(f)|p(f, f|y)):

L(q) =
N∑
i=1

Eq [log p(yi |fi)]− KL(q(f)|p(f))

• Stochastic optimization of q(f) and the hyper-parameters!

• The cost is O(CM3) (uses quadratures)!

5 / 40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi) = (1− ε)pi +
ε

C − 1
(1− pi) with pi =

1 if yi = arg max
k

f k(xi)

0 otherwise

Based on minimizing KL(p(f|f)q(f)|p(f, f|y)):

L(q) =
N∑
i=1

Eq [log p(yi |fi)]− KL(q(f)|p(f))

• Stochastic optimization of q(f) and the hyper-parameters!

• The cost is O(CM3) (uses quadratures)!

5 / 40

Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

p(yi |fi) = (1− ε)pi +
ε

C − 1
(1− pi) with pi =

1 if yi = arg max
k

f k(xi)

0 otherwise

Based on minimizing KL(p(f|f)q(f)|p(f, f|y)):

L(q) =
N∑
i=1

Eq [log p(yi |fi)]− KL(q(f)|p(f))

• Stochastic optimization of q(f) and the hyper-parameters!

• The cost is O(CM3) (uses quadratures)!

5 / 40

Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

6 / 40

Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

6 / 40

Expectation Propagation (EP)

Let θ summarize the latent variables of the model.

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)

The f̃n are tuned by minimizing the KL divergence

DKL[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

6 / 40

Model Specification (Villacampa-Calvo and Hernández-Lobato, 2017)

Consider that yi = arg max
k

f k(xi), which gives the likelihood:

p(y|f) =
∏N

i=1 p(yi |fi) =
∏N

i=1

∏
k 6=yi

Θ(f yi (xi)− f k(xi))

The posterior approximation is also set to be q(f) =
∫
p(f|f)q(f)df.

We enforce that q(f) ≈ p(f|y). The posterior over f is:

p(f|y) =

∫
p(y|f)p(f|f)dfp(f)

p(y)
≈

[
∏N

i=1

∫
p(yi |fi)p(fi |f)dfi]p(f)

p(y)

where we have used the FITC approximation p(f|f) ≈
∏N

i=1 p(fi |f).

The corresponding likelihood factors are:

φi (f) =

∫ [∏
k 6=yi

Θ
(
f yii − f ki

)]∏C
k=1 p(f ki |f

k
)dfi

≈
∏
k 6=yi

p(f yii > f ki) =
∏
k 6=yi

Φ(αk
i)

7 / 40

Model Specification (Villacampa-Calvo and Hernández-Lobato, 2017)

Consider that yi = arg max
k

f k(xi), which gives the likelihood:

p(y|f) =
∏N

i=1 p(yi |fi) =
∏N

i=1

∏
k 6=yi

Θ(f yi (xi)− f k(xi))

The posterior approximation is also set to be q(f) =
∫
p(f|f)q(f)df.

We enforce that q(f) ≈ p(f|y). The posterior over f is:

p(f|y) =

∫
p(y|f)p(f|f)dfp(f)

p(y)
≈

[
∏N

i=1

∫
p(yi |fi)p(fi |f)dfi]p(f)

p(y)

where we have used the FITC approximation p(f|f) ≈
∏N

i=1 p(fi |f).

The corresponding likelihood factors are:

φi (f) =

∫ [∏
k 6=yi

Θ
(
f yii − f ki

)]∏C
k=1 p(f ki |f

k
)dfi

≈
∏
k 6=yi

p(f yii > f ki) =
∏
k 6=yi

Φ(αk
i)

7 / 40

Model Specification (Villacampa-Calvo and Hernández-Lobato, 2017)

Consider that yi = arg max
k

f k(xi), which gives the likelihood:

p(y|f) =
∏N

i=1 p(yi |fi) =
∏N

i=1

∏
k 6=yi

Θ(f yi (xi)− f k(xi))

The posterior approximation is also set to be q(f) =
∫
p(f|f)q(f)df.

We enforce that q(f) ≈ p(f|y). The posterior over f is:

p(f|y) =

∫
p(y|f)p(f|f)dfp(f)

p(y)
≈

[
∏N

i=1

∫
p(yi |fi)p(fi |f)dfi]p(f)

p(y)

where we have used the FITC approximation p(f|f) ≈
∏N

i=1 p(fi |f).

The corresponding likelihood factors are:

φi (f) =

∫ [∏
k 6=yi

Θ
(
f yii − f ki

)]∏C
k=1 p(f ki |f

k
)dfi

≈
∏
k 6=yi

p(f yii > f ki) =
∏
k 6=yi

Φ(αk
i)

7 / 40

Model Specification (Villacampa-Calvo and Hernández-Lobato, 2017)

Consider that yi = arg max
k

f k(xi), which gives the likelihood:

p(y|f) =
∏N

i=1 p(yi |fi) =
∏N

i=1

∏
k 6=yi

Θ(f yi (xi)− f k(xi))

The posterior approximation is also set to be q(f) =
∫
p(f|f)q(f)df.

We enforce that q(f) ≈ p(f|y). The posterior over f is:

p(f|y) =

∫
p(y|f)p(f|f)dfp(f)

p(y)
≈

[
∏N

i=1

∫
p(yi |fi)p(fi |f)dfi]p(f)

p(y)

where we have used the FITC approximation p(f|f) ≈
∏N

i=1 p(fi |f).

The corresponding likelihood factors are:

φi (f) =

∫ [∏
k 6=yi

Θ
(
f yii − f ki

)]∏C
k=1 p(f ki |f

k
)dfi

≈
∏
k 6=yi

p(f yii > f ki) =
∏
k 6=yi

Φ(αk
i)

7 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

Efficient EP using Mini-batches

Consider a minibatch of data Mb:

1 Refine in parallel all approximate factors φ̃i ,k corresponding to Mb.

2 Reconstruct the posterior approximation q.

3 Get a noisy estimate of the grad of logZq w.r.t to each ξkj and xki ,d .

4 Update all model hyper-parameters.

5 Reconstruct the posterior approximation q.

If |Mb| < M the cost is O(CM3).

8 / 40

α-divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α) .

(Amari, 1985).

Figure source: (Minka, 2005).

9 / 40

α-divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α) .

(Amari, 1985).

0.5 10

q tends to fit a mode of p q tends to fit p globally

Figure source: (Minka, 2005).

9 / 40

α-divergence

Dα(p||q) =
∫
θ

(
αp(θ) + (1− α)q(θ)− p(θ)αq(θ)1−α

)
dθ

α(1− α) .

(Amari, 1985).

Variational
Bayes (VB)

0.5 10

q tends to fit a mode of p q tends to fit p globally

Expectation
propagation (EP)

Figure source: (Minka, 2005).

9 / 40

Local α-divergence minimization (Power EP)

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)
(Minka, 2004)

The f̃n are tuned by minimizing the local α-divergences

Dα[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

10 / 40

Local α-divergence minimization (Power EP)

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)
(Minka, 2004)

The f̃n are tuned by minimizing the local α-divergences

Dα[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

10 / 40

Local α-divergence minimization (Power EP)

Approximates p(θ) ∝ p0(θ)
∏N

n=1 fn(θ) with q(θ) ∝ p0(θ)
∏N

n=1 f̃n(θ)
(Minka, 2004)

The f̃n are tuned by minimizing the local α-divergences

Dα[pn||q] for n = 1, . . . ,N , where
pn(θ) ∝ fn(θ)

∏
j 6=n f̃j(θ)

q(θ) ∝ f̃n(θ)
∏

j 6=n f̃j(θ)
.

10 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

α-divergence minimization via KL minimization

Power EP steps to refine f̃n:

1 Compute cavity: q\αn ∝ q/f̃ αn .

2 Minimize KL(Z−1
n f αn q\αn||q) to find qnew.

3 Update factor: f̃ new
n = (Znq

new/q\αn)
1
α .

At convergence the moments of p̃ = Z−1
n f αn q\αn and q match!

∇ηqDα[pn||q] =
Zp̃

α
(Eq[s(θ)]− Ep̃[s(θ)]) ∝ ∇ηqKL[p̃||q]

where p̃ ∝ (fnq
\n)αq1−α = f αn q\αn.

At convergence ∇ηqDα[pn||q] equals zero!

11 / 40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

logZPEP = logZq − logZprior +
N∑

n=1

1

α
log Eq

[(
fn(θ)

f̃n(θ)

)α]
,

The power-EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZPEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Solved with double-loop algorithm (Heskes, 2002). Too slow in practice!

12 / 40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

logZPEP = logZq − logZprior +
N∑

n=1

1

α
log Eq

[(
fn(θ)

f̃n(θ)

)α]
,

The power-EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZPEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Solved with double-loop algorithm (Heskes, 2002). Too slow in practice!

12 / 40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

logZPEP = logZq − logZprior +
N∑

n=1

1

α
log Eq

[(
fn(θ)

f̃n(θ)

)α]
,

The power-EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZPEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Solved with double-loop algorithm (Heskes, 2002).

Too slow in practice!

12 / 40

Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

logZPEP = logZq − logZprior +
N∑

n=1

1

α
log Eq

[(
fn(θ)

f̃n(θ)

)α]
,

The power-EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZPEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Solved with double-loop algorithm (Heskes, 2002). Too slow in practice!

12 / 40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

13 / 40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

13 / 40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

13 / 40

Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

13 / 40

Refined Prior Approximate Power EP (RPAPEP)

As α→ 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of q:

APEP or PEP VI

q ∝ p0f̃
N q ≡ Gaussian distribution

To avoid this we let q ∝ f̃ N and process the prior too!

logZPEP = logZq +
N∑

n=0

1

α
log Eq

[(
fn(θ)

f̃ (θ)

)α]
,

14 / 40

Refined Prior Approximate Power EP (RPAPEP)

As α→ 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of q:

APEP or PEP VI

q ∝ p0f̃
N q ≡ Gaussian distribution

To avoid this we let q ∝ f̃ N and process the prior too!

logZPEP = logZq +
N∑

n=0

1

α
log Eq

[(
fn(θ)

f̃ (θ)

)α]
,

14 / 40

Refined Prior Approximate Power EP (RPAPEP)

As α→ 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of q:

APEP or PEP VI

q ∝ p0f̃
N q ≡ Gaussian distribution

To avoid this we let q ∝ f̃ N and process the prior too!

logZPEP = logZq +
N∑

n=0

1

α
log Eq

[(
fn(θ)

f̃ (θ)

)α]
,

14 / 40

Refined Prior Approximate Power EP (RPAPEP)

As α→ 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of q:

APEP or PEP VI

q ∝ p0f̃
N q ≡ Gaussian distribution

To avoid this we let q ∝ f̃ N and process the prior too!

logZPEP = logZq +
N∑

n=0

1

α
log Eq

[(
fn(θ)

f̃ (θ)

)α]
,

14 / 40

Refined Prior Approximate Power EP (RPAPEP)

As α→ 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of q:

APEP or PEP VI

q ∝ p0f̃
N q ≡ Gaussian distribution

To avoid this we let q ∝ f̃ N and process the prior too!

logZPEP = logZq +
N∑

n=0

1

α
log Eq

[(
fn(θ)

f̃ (θ)

)α]
,

14 / 40

Experiments: UCI Datasets

Dataset #Instances #Attributes #Classes
Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3

15 / 40

Experiments: UCI Datasets

●

●

●

●

●
●

● ●
●

●

●

5

6

7

8

0.00 0.25 0.50 0.75 1.00
alpha

M
ea

n
te

st
 n

eg
at

iv
e

lo
g

lik
el

ih
oo

d
ra

nk PEP

●

●

●

●

●
● ●

●
● ●

●
5

6

7

8

9

0.00 0.25 0.50 0.75 1.00
alpha

M
ea

n
te

st
 n

eg
at

iv
e

lo
g

lik
el

ih
oo

d
ra

nk APEP

●

●

●

●

●
● ●

● ● ● ●5

6

7

8

9

0.00 0.25 0.50 0.75 1.00
alpha

M
ea

n
te

st
 n

eg
at

iv
e

lo
g

lik
el

ih
oo

d
ra

nk RPAPEP

1

2

3

4
rank

16 / 40

Toy Problem: Inducing Point Locations

α→ 0 α = 0.2 α = 0.4 α = 0.5 α = 0.6 α = 0.8 α = 1

P
E

P

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

● ● ●

●
●

●

●

●

●●
●●

●

●

● ●
● ● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●● ●

●

●
● ●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●●

●

●●

●

●●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●●

●
●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

● ●● ●● ●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

● ●

●●

●

●

●

●

●
●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●● ●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ● ●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●●●

●

●

●

●
●

●●●
●

●

●

●

● ●●● ●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●●

●

●

●●●

●

●

● ●●

●●●
●

●

●

●

● ●●● ●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●

● ●●●

●

●

●●
● ●●

●
●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A
P

E
P

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

● ●

●

●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●●
●

●

●
●

●

●

●
●

●●●

●
●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

R
P

A
P

E
P

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●
●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

● ●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

17 / 40

MNIST Dataset

10 classes, 60,000 training instances.

0.10

0.54

0.98

1.42

1.86

2.30

1e+03 1e+05
Training Time in Seconds in a Log10 Scale

N
eg

. T
es

t L
og

−L
ik

el
ih

oo
d Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

PEP

0.10

0.54

0.98

1.42

1.86

2.30

100 10000
Training Time in Seconds in a Log10 Scale

N
eg

. T
es

t L
og

−L
ik

el
ih

oo
d Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

APEP

0.10

0.54

0.98

1.42

1.86

2.30

100 10000
Training Time in Seconds in a Log10 Scale

N
eg

. T
es

t L
og

−L
ik

el
ih

oo
d Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

RPAPEP

18 / 40

Airline Delays

3 classes, 2 million training instances.

0.95

1.00

1.05

1.10

1.15

1.20

100 1000 10000
Training Time in Seconds in a Log10 Scale

N
eg

. T
es

t L
og

−L
ik

el
ih

oo
d Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

PEP

0.95

1.00

1.05

1.10

1.15

1.20

100 1000 10000
Training Time in Seconds in a Log10 Scale

N
eg

. T
es

t L
og

−L
ik

el
ih

oo
d Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

APEP

0.95

1.00

1.05

1.10

1.15

1.20

100 1000 10000
Training Time in Seconds in a Log10 Scale

N
eg

. T
es

t L
og

−L
ik

el
ih

oo
d Alpha

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VB

RPAPEP

19 / 40

Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.

20 / 40

Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.

20 / 40

Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.

20 / 40

Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.

20 / 40

Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.

20 / 40

Conclusions so far...

• We have described a collection of methods to approximately
minimize α-divergences in MGPC.

• Efficient training and memory usage with cost O(CM3).

• Extensive experimental comparisons.

• α = 0.5 gives over-all good results in the experiments.

• α = 0.5 sometimes outperforms VB or EP methods for MGPC.

• VB sometimes gives bad test log-likelihoods.

20 / 40

Motivation for Deep Gaussian Processes

x1

x
2

GP fit

x1

x
2

Target function

x1

x
2

DGP fit

21 / 40

Motivation for Deep Gaussian Processes

x1

x
2

GP fit

x1

x
2

Target function

x1

x
2

DGP fit

21 / 40

Motivation for Deep Gaussian Processes

x1

x
2

GP fit

x1

x
2

Target function

x1

x
2

DGP fit

21 / 40

How do deep GPs work?

x1

x
2

x1

x
2

f11

f 1
2

x1, x2

f11(x1, x2) f12(x1, x2)

f2(f11, f12)

y
+ noise

≡

x1

x
2

y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))

22 / 40

How do deep GPs work?

x1

x
2

x1

x
2

f11

f 1
2

x1, x2

f11(x1, x2) f12(x1, x2)

f2(f11, f12)

y
+ noise

≡

x1

x
2

y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))

22 / 40

How do deep GPs work?

x1

x
2

x1

x
2

f11

f 1
2

x1, x2

f11(x1, x2) f12(x1, x2)

f2(f11, f12)

y
+ noise

≡

x1

x
2

y = g(x1, x2)+ noise

f11, f12, f2 ∼ GP(0,C (·, ·))

22 / 40

Deep GPs as Deep Neural Networks

x1

x2

x3

Inputs

x

GP

f (1)(x)

GP

y

GP

f (3)(x)

GP

f (2)(x)

23 / 40

Why deep GPs?

Advantages:

• useful input warping: automatic, nonparametric kernel design

• repair damage done by sparse approximations to GPs

• more accurate predictions and better uncertainty estimates

Drawbacks:

• require complicated approximate inference methods

• high computational cost

24 / 40

Why deep GPs?

Advantages:

• useful input warping: automatic, nonparametric kernel design

• repair damage done by sparse approximations to GPs

• more accurate predictions and better uncertainty estimates

Drawbacks:

• require complicated approximate inference methods

• high computational cost

24 / 40

Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(f1, f2, f3|Y) =
p(f1)p(f2)p(f3) p(Y|f1, f2, f3,X)

p(Y)

• GP priors

• Likelihood function

• Marginal likelihood

But the posterior p(f1, f2, f3|Y) is intractable.

25 / 40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M � N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x)|u) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

u ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x .

If p(u) = N (u|m,S), then p(f (x)) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

m ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x + kx,X̄K−1
X̄,X̄

SK−1
X̄,X̄

kX̄,x .

Given u or a Gaussian for u, f is fully specified!

26 / 40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M � N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x)|u) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

u ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x .

If p(u) = N (u|m,S), then p(f (x)) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

m ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x + kx,X̄K−1
X̄,X̄

SK−1
X̄,X̄

kX̄,x .

Given u or a Gaussian for u, f is fully specified!

26 / 40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M � N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x)|u) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

u ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x .

If p(u) = N (u|m,S), then p(f (x)) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

m ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x + kx,X̄K−1
X̄,X̄

SK−1
X̄,X̄

kX̄,x .

Given u or a Gaussian for u, f is fully specified!

26 / 40

Inducing Points Representation

Latent variables: from O(N) to O(M), with M � N.

Distribution on f given by GP with inducing inputs X̄ and outputs u.

If u is known, then p(f (x)|u) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

u ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x .

If p(u) = N (u|m,S), then p(f (x)) = N (f (x)|mx, vx), where

mx = kx,X̄K−1
X̄,X̄

m ,

vx = kx,x − kx,X̄K−1
X̄,X̄

kX̄,x + kx,X̄K−1
X̄,X̄

SK−1
X̄,X̄

kX̄,x .

Given u or a Gaussian for u, f is fully specified!

26 / 40

Deep Gaussian Process Joint Distribution.

p(y, {ul , f l}Li=1) =

Likelihood︷ ︸︸ ︷
N∏
i=1

p(yi |f Li)×

L∏
l=1

p(f l |ul ,X
l
)p(ul |Xl

)︸ ︷︷ ︸
Deep GP prior

27 / 40

Prob. Graphical Model and Posterior Approx.

q({f l ,ul}Ll=1) =
L∏

l=1

p(f l |ul) q(ul)

• Fixed
• Tuneable

28 / 40

Prob. Graphical Model and Posterior Approx.

q({f l ,ul}Ll=1) =
L∏

l=1

p(f l |ul) q(ul)

• Fixed
• Tuneable

28 / 40

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing:

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• Suitable for stochastic optimization.

• The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
29 / 40

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing:

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• Suitable for stochastic optimization.

• The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
29 / 40

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing:

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• Suitable for stochastic optimization.

• The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
29 / 40

Variational Inference for Deep GPs

Based on minimizing KL(q({ul , f l}Ll=1)|p({ul , f l}Ll=1|y))

Equivalent to maximizing:

L = Eq

[
log

∏N
i=1 p(yi |f Li)

∏L
l=1 ����p(f l |ul)p(ul)∏L

l=1 ����p(f l |ul)q(ul)

]
.

=
N∑
i=1

Eq[log p(yi |f Li)]−
L∑

l=1

KL(q(ul)|p(ul)) .

• Suitable for stochastic optimization.

• The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
29 / 40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(yi |f Li).

The EP approximation to the evidence p(y) is given by

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃n(θ)

)]
,

The EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Can be solved with a double-loop algorithm. Too slow in practice!

(Bui, 2016)

30 / 40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(yi |f Li).

The EP approximation to the evidence p(y) is given by

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃n(θ)

)]
,

The EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Can be solved with a double-loop algorithm. Too slow in practice!

(Bui, 2016)

30 / 40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(yi |f Li).

The EP approximation to the evidence p(y) is given by

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃n(θ)

)]
,

The EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Can be solved with a double-loop algorithm. Too slow in practice!

(Bui, 2016)

30 / 40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(yi |f Li).

The EP approximation to the evidence p(y) is given by

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃n(θ)

)]
,

The EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Can be solved with a double-loop algorithm.

Too slow in practice!

(Bui, 2016)

30 / 40

Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(yi |f Li).

The EP approximation to the evidence p(y) is given by

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃n(θ)

)]
,

The EP solution for q can be obtained by solving

max
q

min
f̃1,...,f̃N

logZEP subject to q(θ) = p0(θ)
N∏

n=1

f̃n(θ) .

Can be solved with a double-loop algorithm. Too slow in practice!

(Bui, 2016)

30 / 40

Approximate Expectation Propagation

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

31 / 40

Approximate Expectation Propagation

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

31 / 40

Approximate Expectation Propagation

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

31 / 40

Approximate Expectation Propagation

We tie the factor
approximations

• max
q

min
f̃1,...,f̃N

problem → max
q

problem, no double-loop needed!

• Memory saving scales as O(N).

• Standard optimization tools can be used (stochastic gradients).

31 / 40

Approximate EP

One only needs to optimize

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃ (θ)

)]
.

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!

32 / 40

Approximate EP

One only needs to optimize

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃ (θ)

)]
.

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!

32 / 40

Approximate EP

One only needs to optimize

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃ (θ)

)]
.

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!

32 / 40

Approximate EP

One only needs to optimize

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃ (θ)

)]
.

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!

32 / 40

Approximate EP

One only needs to optimize

logZEP = logZq − logZprior +
N∑

n=1

log Eq

[(
fn(θ)

f̃ (θ)

)]
.

But this requires integrating the exact likelihood factors (intractable).

The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!

32 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33 / 40

α-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

logZEP = logZq − logZprior +
1

α

N∑
n=1

log Eq

[(
fn(θ)

f̃ (θ)

)α]
.

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.

Expected to give better results than the Gaussian approximation!

34 / 40

α-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

logZEP = logZq − logZprior +
1

α

N∑
n=1

log Eq

[(
fn(θ)

f̃ (θ)

)α]
.

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.

Expected to give better results than the Gaussian approximation!

34 / 40

α-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

logZEP = logZq − logZprior +
1

α

N∑
n=1

log Eq

[(
fn(θ)

f̃ (θ)

)α]
.

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.

Expected to give better results than the Gaussian approximation!

34 / 40

α-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

logZEP = logZq − logZprior +
1

α

N∑
n=1

log Eq

[(
fn(θ)

f̃ (θ)

)α]
.

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.

Expected to give better results than the Gaussian approximation!

34 / 40

Monte Carlo Approximation

−3

−2

−1

0

1

2
y

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

−6 −4 −2 0 2 4 6
x

Figure by T. Bui

The predictive distribution with random Gaussian inputs may be
very different from Gaussian!

35 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

36 / 40

Monte Carlo Approximation

The required expectation is approximated as:

1

α
logEq

[(
fn(θ)

f̃ (θ)

)α]
≈ 1

α
log

(
1

S

S∑
s=1

p(yi |f Li ,s)

)
− gq
α

+
gqαcav

α

gq ≡ Log. Normalizer of q.

gqαcav
≡ Log. Normalizer of the approximate PEP cavity.

This is a biased estimate, but the bias goes to zero as the number
of samples S increases.

37 / 40

Monte Carlo Approximation

The required expectation is approximated as:

1

α
logEq

[(
fn(θ)

f̃ (θ)

)α]
≈ 1

α
log

(
1

S

S∑
s=1

p(yi |f Li ,s)

)
− gq
α

+
gqαcav

α

gq ≡ Log. Normalizer of q.

gqαcav
≡ Log. Normalizer of the approximate PEP cavity.

This is a biased estimate, but the bias goes to zero as the number
of samples S increases.

37 / 40

Monte Carlo Approximation

The required expectation is approximated as:

1

α
logEq

[(
fn(θ)

f̃ (θ)

)α]
≈ 1

α
log

(
1

S

S∑
s=1

p(yi |f Li ,s)

)
− gq
α

+
gqαcav

α

gq ≡ Log. Normalizer of q.

gqαcav
≡ Log. Normalizer of the approximate PEP cavity.

This is a biased estimate, but the bias goes to zero as the number
of samples S increases.

37 / 40

Expected Benefits of α-divergence Minimization

Similar to those of Bayesian neural networks...

(Depeweg et al., 2016)

38 / 40

Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40

Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40

Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40

Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40

Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40

Conclusions and Future Work

• Deep GP are flexible models for machine learning.

• Can alleviate some of the limitations of standard GPs.

• Several ways of training them, including VI or AEP.

• DGPs can be trained by approximately minimizing α-divergences.

• α-divergence minimization may outperform VI or AEP methods.

Future Work:

• Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.

39 / 40

Thank you for your attention!

40 / 40

References I

• Bauer, M., van der Wilk, M., and Rasmussen, C. E. Understanding probabilistic sparse
Gaussian process approximations. NIPS 29, pp. 1533-1541. 2016.

• Chai, K. M. A. Variational multinomial logit Gaussian process. JMLR, 13:1745-1808,
2012.

• Girolami, M. and Rogers, S. Variational Bayesian multinomial probit regression with
Gaussian process priors. Neural Computation, 18:1790-1817, 2006.

• Hensman, J., Matthews, A. G., Filippone, M., and Ghahramani, Z. MCMC for
variationally sparse Gaussian processes. NIPS 28, pp. 1648-1656. 2015.

• Hernández-Lobato, D. and Hernández-Lobato, J. M. Scalable Gaussian process
classification via expectation propagation. AISTATS, pp. 168-176, 2016.

• Kim, H.-C. and Ghahramani, Z. Bayesian Gaussian process classification with the
EM-EP algorithm. IEEE PAMI, 28, 1948-1959, 2006.

• Li, Y., Hernandez-Lobato, J. M., and Turner, R. E. Stochastic expectation propagation.
NIPS 28, pp. 2323-2331. 2015.

• Naish-Guzman, A. and Holden, S. The generalized FITC approximation. NIPS 20, pp.
1057-1064. 2008.

• Riihimäki, J., Jylänki, P., and Vehtari, A. Nested expectation propagation for Gaussian
process classification with a multinomial probit likelihood. JMLR, 14, 75-109, 2013.

• Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. NIPS
18, pp. 1257-1264, 2006.

• Williams, C. K. I. and Barber, D. Bayesian classification with Gaussian processes. IEEE
PAMI, 20,1342-1351, 1998.

40 / 40

References II

• Damianou, A., and Lawrence, N. Deep gaussian processes. In Artificial Intelligence and
Statistics (pp. 207-215), 2013.

• Bui, Thang, et al. Deep gaussian processes for regression using approximate expectation
propagation. En International Conference on Machine Learning. 2016. p. 1472-1481.

• Salimbeni, H., and Deisenroth, M. (2017). Doubly stochastic variational inference for
deep gaussian processes. In Advances in Neural Information Processing Systems (pp.
4588-4599).

• Hernandez-Lobato, J., Li, Y., Rowland, M., Bui, T., Hernandez-Lobato, D. and Turner,
R.. (2016). Black-Box Alpha Divergence Minimization. Proceedings of The 33rd
International Conference on Machine Learning, in PMLR 48:1511-1520

• Depeweg, S., Hernndez-Lobato, J. M., Doshi-Velez, F., and Udluft, S. (2016). Learning
and policy search in stochastic dynamical systems with bayesian neural networks. arXiv
preprint arXiv:1605.07127.

• T. Bui. Efficient Deterministic Approximate Bayesian Inference for Gaussian Process
Models. PhD thesis, 2017.

• Duvenaud, D., Rippel, O., Adams, R., and Ghahramani, Z. (2014, April). Avoiding
pathologies in very deep networks. In Artificial Intelligence and Statistics (pp. 202-210).

40 / 40

Specific Application of PEP to Multi-class GPC

The likelihood factors are the same as those of the VI approach:

p(yi |fi) = (1− ε)pi +
ε

C − 1
(1− pi) with pi =

1 if yi = arg max
k

f k(xi)

0 otherwise

The posterior approximation is:

q(f, f) = p(f|f)q(f)

At each step of PEP we have to update φ̃i to minimize:

KL

[
p(yi |fi)αp(f|f)

q(f)

φ̃αi
|| p(f|f)q(f)

]

Done by matching the moments of f! Requires quadratures!

40 / 40

