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Introduction to Multi-class Classification with GPs
Given x; we want to make predictions about y; € {1,...,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

y; =arg max fX(x;) for ke{l,...,C}
k
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Introduction to Multi-class Classification with GPs

Given x; we want to make predictions about y; € {1,...,C}, C > 2.

One can assume that (Kim & Ghahramani, 2006):

yi = arg max  fX(x;)
k
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under p(f<) ~ GP(0, k(-,-)).
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Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk},le per each class label k.
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Efficient Methods for Multi-Class GPs

Introduce M inducing points {Xk},le per each class label k.

The posterior approximation is q(f) = [ p(f|f)q(f)df
a(F) =TTy N (. 29)
= (P, P ()T X' = ()T

where q(f) intuitively approximates p(f|y) and p(f|f) = H,le p(fk\fk).

The number of latent variables goes from CN to CM, with M < N.

Minibatches and stochastic gradients reduce the cost to O(CM).
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Stochastic Variational Inference for Multi-class GPs

Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
€ . 1
p(}/i|fi) = (1 - 6)Pi + ﬁ(l - p,-) with p; = k
o 0 otherwise
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Hensman et al., 2015, use a robust likelihood function:

1 if y;=argmax fK(x;)
€ . 1
p(}/ilfi) = (1 - 6)Pi + ﬁ(l - p,-) with p; = k
o 0 otherwise

Based on minimizing KL(p(f|F)q(f)|p(F, fly)):

N
£(q) = ) Eqlog p(yilfi)] — KL(q(F)|p(F))

i=1

® Stochastic optimization of q(f) and the hyper-parameters!

® The cost is O(CM?3) (uses quadratures)!
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Expectation Propagation (EP)

Let @ summarize the latent variables of the model.

Approximates

p(0) o< po(0) [TV, £2(6)

with

q(8) o po(0) [Th, £(0)

6/40



Expectation Propagation (EP)

Let @ summarize the latent variables of the model.

Approximates | p(8) o po(8) [TN_; f(0) | with | g(8) o po(0) [TV, 7(8)

p(@) < po(0) fi1(0) f2(6) f3(6) 90) o< po(8) f1(0) f2(6) f5(6)
Cac2cB8c 0 ~ | | | e |

6/40



Expectation Propagation (EP)

Let @ summarize the latent variables of the model.

Approximates | p(8) o po(8) [TN_; f(0) | with | g(8) o po(0) [TV, 7(8)

p(@) < po(0) fi1(0) f2(6) f3(6) 90) o< po(8) f1(0) f2(6) f5(6)
Cac2cB8c 0 ~ | | | e |

The £, are tuned by minimizing the KL divergence

B Pn(9) X fn(g)Hj nﬁ(e)
Dki[pnllq] forn=1,...,N, where a(6) fn(é’)l_[;nﬁw)
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Model Specification (villacampa-Calvo and Hernandez-Lobato, 2017)

Consider that y; = arg max  f¥(x;), which gives the likelihood:
K

p(yIf) = TTiey Pilf:) = TT1e TLacsy, ©(F (xi) — £5(x))
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We enforce that q(f) ~ p(f|y). The posterior over f is:

_ LpOIR)p(f)dfp() _ [T, J p(yilf)p(F[F)dFilp(F)
p(y) p(y)

where we have used the FITC approximation p(f[f) ~ [T, p(fiF).

p(fly)

The corresponding likelihood factors are:
—_ . —k
0i0) = [ [TTew, © (7" — )] T, plE4F)a
~ [L et > 74 = T] @(0h)

kZyi k#yi
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Efficient EP using Mini-batches

Consider a minibatch of data M,:
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Efficient EP using Mini-batches

Consider a minibatch of data M,:

@ Refine in parallel all approximate factors (;Nﬁi’k corresponding to My,
® Reconstruct the posterior approximation gq.

© Get a noisy estimate of the grad of log Z; w.r.t to each £f and X} 4.
O Update all model hyper-parameters.

@ Reconstruct the posterior approximation gq.

If [Mp| < M the cost is O(CM?3).
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a-divergence

Jo (ap(6) + (1 — a)a(6) — p(6)*4(0)'"") d6

Da(plla) = a(l—a)

(Amari, 1985).
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a-divergence

Jo (ap(6) + (1 — a)a(6) — p(6)*4(0)'"") d6

Da(pllq) =

a(l —a)
(Amari, 1985).
«
q tends to fit a mode of p q tends to fit p globally
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Figure source: (Minka, 2005).
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a-divergence

Jy (ap(8) + (1 = a)a(6) — p(6)*q(6)'~*) dB

Da(pllq) =

a(l —a)
(Amari, 1985).
«
q tends to fit a mode of p q tends to fit p globally
T T T
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Variational Expectation
Bayes (VB) propagation (EP)

KL(q|lp) KL(pllq)

Figure source: (Minka, 2005).
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Local a-divergence minimization (Power EP)

Approximates

(Minka, 2004)
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q(0) o< po(0) [T, #(0)
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(Minka, 2004)

p(0) < po(0) f1(0) f2(0) f3(0) q®0) o< po(0) f1(0) f2(0) f3(0)
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The f, are tuned by minimizing the local a-divergences

pn(0)

D f =1,...,N h
a[anq] orn ) ) 9 wnere q(e)
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X
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a-divergence minimization via KL minimization

Power EP steps to refine fo:
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a-divergence minimization via KL minimization

Power EP steps to refine fo:
©® Compute cavity: ¢\*" q/fna.
® Minimize KL(Z;1£%¢\*"||q) to find g"*"
© Update factor: 7"V = (an“ew/q\o‘")i.

At convergence the moments of = Z,jlfn“q\a" and g match!
Zs .
Vg Dalpallgl = = (Eq[s(6)] - E5[s(0)]) < Vy, KL[B]|q]
where p o (f, q\”)a 1—o — faq\a”

At convergence V, D, [ps||q] equals zero!
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Alternative Algorithms for PEP

The Power-EP approximation to the evidence is given by

N
1 f(0)\
log Zpep = log Zg — log Zprior + Z o log Eq [(F E9;> ] ’
n=1 n
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The Power-EP approximation to the evidence is given by

N
1 £(0)\°
log Zpep = log Zq — log Zprior + — log Eq |:( = > :| )
2o = o)

The power-EP solution for g can be obtained by solving

N

max min log Zpgp subject to q(0@) = po(O) H n(6) .

q flv---ny n=1

Solved with double-loop algorithm (Heskes, 2002). Too slow in practice!
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Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

p(@) o< po(0) f1(6) f2(0) f3(0) a(0) o< po(8) f1(6) f2(8) f3(6)

[ — S S g I | | | —

We tie the factor
approximations
f(0)N

p(0) < po(0) f1(0) f2(0) f3(0) q(0) o< po() f

[ — s S g I I | e
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Approximate Power EP (APEP)

By following (Li et al., 2015) (Bui et al., 2016):

p(8) o< po(6)  f1(0) f2(0) f3(0) 90) o< po(8) f1(6) f2(0) f3(6)
[ — 5 S g IR | ) | |

[ |
We tie the factor
approximations + + +
p(@) o< po(6) f1(0) f2(0) f5(0) q(6) < po(6) fen

[ — s S g I I | o e

® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).

¢ Standard optimization tools can be used (stochastic gradients).
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Refined Prior Approximate Power EP (RPAPEP)

As oo — 0 the PEP and APEP solution converges to a VI solution.
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As o — 0 the PEP and APEP solution converges to a VI solution.

Can all VI solutions be reached by minimizing the APEP objective?

No since they use different parameterizations of g:

APEP or PEP \"|

q x pofN g = Gaussian distribution

To avoid this we let g « fN and process the prior too!

N
1 f(0)\
log Zpgp = log Z, + —logE K - > ] ,
’ nz—;)o‘ L\ (o)
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Experiments: UCI Datasets

Dataset F#lInstances #Attributes #Classes
Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 1000 21 3
Wine 178 13 3
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UCI Datasets

Experiments
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Toy Problem: Inducing Point Locations
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MNIST Dataset

10 classes, 60,000 training instances.
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Airline Delays

3 classes, 2 million training instances.
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Conclusions so far...

® We have described a collection of methods to approximately
minimize a-divergences in MGPC.
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Conclusions so far...

We have described a collection of methods to approximately
minimize a-divergences in MGPC.

Efficient training and memory usage with cost O(CM?3).
® Extensive experimental comparisons.
® o = 0.5 gives over-all good results in the experiments.

® o = 0.5 sometimes outperforms VB or EP methods for MGPC.

VB sometimes gives bad test log-likelihoods.
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Motivation for Deep Gaussian Processes

Target function
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How do deep GPs work?
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How do deep GPs work?

X1, X2
— ~

fi1(x1, x2) fia(x1, x2) ‘

y = g(x1,x2)+ noise

1

fi1, fiz, o ~ GP(0, C(-,-))

11
1-1— noise
y 22/40



Deep GPs as Deep Neural Networks
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Why deep GPs?

Advantages:
® yseful input warping: automatic, nonparametric kernel design
® repair damage done by sparse approximations to GPs

® more accurate predictions and better uncertainty estimates
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Why deep GPs?

Advantages:
® yseful input warping: automatic, nonparametric kernel design
® repair damage done by sparse approximations to GPs

® more accurate predictions and better uncertainty estimates

Drawbacks:
® require complicated approximate inference methods

® high computational cost
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Bayesian inference

Posterior over latent functions (typically at the observed data X):

p(fH)p(F)p(f?) p(YIF',F2, 3, X)

p(f*, £, F2|Y) =
p(Y)

® GP priors
e | ikelihood function

® Marginal likelihood

But the posterior p(f!, 2, f3|Y) is intractable.
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Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.
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Distribution on f given by GP with inducing inputs X and outputs u.

If uis known, then p(f(x)|u) = N(f(x)|mx, v), where
my = k, xKz x4
W = kxx — Ky 5Ky ks -
If p(u) = N (ulm,S), then p(f(x)) = N(f(x)|mx, v), where
my = kx7)—(K)?(’1)-(m,

Ve = Kyx — kx7)—(K)?(’1)-(k)—(7x + kx7,—(K)?(71)-(SK)?(71)-(k,—(7x )
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Inducing Points Representation

Latent variables: from O(N) to O(M), with M < N.

Distribution on f given by GP with inducing inputs X and outputs u.

If uis known, then p(f(x)|u) = N(f(x)|mx, v), where
my = k, xKz x4
W = kxx — Ky 5Ky ks -
If p(u) = N (ulm,S), then p(f(x)) = N(f(x)|mx, v), where
my = kx7)—(K)?(’1)-(m,
W = kx — Ky 5K ks + ko kK 3 SK xkox -
Given u or a Gaussian for u, f is fully specified!
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Deep Gaussian Process Joint Distribution.

Likelihood
——N—

N
p(y, {u', £}1) = [ ] p(ilf) x
i=1

L
[T p(Fu’, X)) p(u'[X")

/=1

Deep GP prior
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Prob. Graphical Model and Posterior Approx.
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Prob. Graphical Model and Posterior Approx.

N (u?|msy, S2)

® Fixed
® Tuneabl
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Variational Inference for Deep GPs

Based on minimizing KL(g({u’,f'}L_)|p({u’,f}L_,]y))

(Salimbeni, 2017)
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Variational Inference for Deep GPs
Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing:

1Y, p(yil 1) TT 1y P T p(u')
[T, ptEatyg(u’)

N L
= >~ Eqllog plyilf)] ~ 3 KL(a(u)lp(u)).
i=1 I=1

L =1IEq |log

(Salimbeni, 2017)
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Variational Inference for Deep GPs
Based on minimizing KL(q({u’, f'}L_)|p({u’, f'}L_,]y))

Equivalent to maximizing:

1Y, p(yil 1) TT 1y P T p(u')
[T, ptEatyg(u’)

N L
= >~ Eqllog plyilf)] ~ 3 KL(a(u)lp(u)).
i=1 I=1

L =1IEq |log

e Suitable for stochastic optimization.

® The expectations can be approximated by Monte Carlo.

(Salimbeni, 2017)
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Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y;|fl).

(Bui, 2016)
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The EP approximation to the evidence p(y) is given by

& f(0)
log Zgp = log Zy — log Zprior + Z log Eg [(f)] ,
n=1 fn(e)
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Approximate Expectation Propagation

The likelihood factors to be refined by EP are p(y;|f!).

The EP approximation to the evidence p(y) is given by

& fa(6)
log Zgp = log Zy — log Zprior + Z log Eg [(l’)] ,

n=1 f”(o)
The EP solution for g can be obtained by solving
N ~
max min log Zgp subject to q(0) = po(0) H n(0) .
T oy n=1

Can be solved with a double-loop algorithm.  Too slow in practice!
(Bui, 2016)

30/40



Approximate Expectation Propagation

p(6) o< po(8) f1(0) f2(0) f3(6) q@) o po(0) f1(8) f2(8) f3(0)

| —Tr S e Sl [ 11 Il Il

We tie the factor
approximations
f(0)N

p(0) x  po(8) f1(0) f2(8) f3(0) q(8) o< po(0) f

[ — S e I | | —
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Approximate Expectation Propagation

p(@) < po(0) f1(6) f2(8) f3(0) q(0) < po(8) fi(6) f2(0) f3(0)
CCIeeB A ~ I | | | —

We tie the factor
approximations + + +
p(8) o< po(8) f1(0) f2(0) f3(6) q(0) < po(0) fen

[ —r= S S g I | s | s | |

® max min problem — max problem, no double-loop needed!
9 f,..fy q
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® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).
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Approximate Expectation Propagation

p(0) o< po(8) f1(0) f2(0) f3(0) a@)x po(8) fi1(6) f2(0) f3(0)
[— S S e | ] s |

[ |
We tie the factor
approximations + + +
p(8) o< po(8) f1(0) f2(0) f3(6) q(0) < po(0) fen

[ —r= S S g | | o e

® max min problem — max problem, no double-loop needed!
9 f,..fy q

® Memory saving scales as O(N).

¢ Standard optimization tools can be used (stochastic gradients).
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Approximate EP

One only needs to optimize

- £()
log Zep = log Zg — log Zprior + » _ log Eq K L >] .

n=1
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Approximate EP

One only needs to optimize

- £()
log Zep = log Zg — log Zprior + » _ log Eq K ;(9) >] .

n=1
But this requires integrating the exact likelihood factors (intractable).
The output distribution after the second and next layers is too complex!

Solution: moment match each GP output to a Gaussian at each layer.

For some kernels it is possible to compute the moments of the GP
predictive distribution with random Gaussian inputs!
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Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

33/40



Iterative Gaussian Approximations

This approach allows to approximate the required expectations!

33/40



a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>a]
log Zgp = log Z, — lo Zrir—l——EIOE = .
0og Zgp g Lq € Zprio o 2 g q[(f(@)
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a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>o‘]
log Zep = log Z, — log Zyrior + — log E = .
g Zep = log Zy — log Zyio a;quf(e)

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.
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a-divergence Minimization for Deep GPs

One only needs to optimize the approximate Power EP objective:

N
1 fn(0)>a]
log Zep = log Z, — log Zyrior + — log E = .
0g £EP g Lq g ZLprio a; g q[<f(9)

But this requires integrating the exact likelihood factors (intractable).

We suggest to use a Monte Carlo approach similar to that of VI.
Expected to give better results than the Gaussian approximation!
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Monte Carlo Approximation

Figure by T. Bui s 4 —2 0 2 4 6

The predictive distribution with random Gaussian inputs may be
very different from Gaussian!
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Monte Carlo Approximation
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Monte Carlo Approximation

The required expectation is approximated as:

a S
1 f(6)\"] 1 1 (L
alogEq |:(f(0)> :| ~ alog (S sz_;p(}/l’f},s)>
&,
(67

(07
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Monte Carlo Approximation

The required expectation is approximated as:

a S
1 n(0) 1 1 1L
alogEq |:(f(0)> :| ~ alog (S sz_;p(}/l’f;',s)>
& S
(67 «

8q = Log. Normalizer of q.

8qa, = Log. Normalizer of the approximate PEP cavity.
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Monte Carlo Approximation

The required expectation is approximated as:

255 | () |

Q

1 1S
1 1 1L
” log (5 SE_I P(y,!f,,s)>

8, Ea
(6%

Q

8q = Log. Normalizer of q.

8qa, = Log. Normalizer of the approximate PEP cavity.

This is a biased estimate, but the bias goes to zero as the number
of samples S increases.
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Expected Benefits of a-divergence Minimization
Similar to those of Bayesian neural networks...

Predictions alpha = 0.5 Predictions alpha = 0

Training Data for Bi-modal Problem

Predictions alpha = 0

Predictions alpha = 0.5

(Depeweg et al., 2016)
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Conclusions and Future Work

® Deep GP are flexible models for machine learning.
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Conclusions and Future Work

Deep GP are flexible models for machine learning.

Can alleviate some of the limitations of standard GPs.

Several ways of training them, including VI or AEP.

DGPs can be trained by approximately minimizing a-divergences.

a-divergence minimization may outperform VI or AEP methods.

Future Work:

® Carry out experiments to assess the benefits of alpha divergence
minimization for Deep GPs.
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Thank you for your attention!
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Specific Application of PEP to Multi-class GPC

The likelihood factors are the same as those of the VI approach:

€

p(yilfi) = (1 —€e)pi + c_ 1(1 —pi) with p;= {

The posterior approximation is:

q(f. ) = p(f|F)q(F)

At each step of PEP we have to update ¢; to minimize:

KL {ptrtt)m(eH L | p(f|f)q(f)]

1

Done by matching the moments of f! Requires quadratures!

0 otherwise

1 if y;=argmax fK(x;)
K
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