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Motivating example
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We want to build a GP regression model with dataset (X ,Y ), and
a GP f ∼ N (0, k) with exponential kernel:

k(x , y) = σ2 exp
(
−|x − y |

θ

)
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Given the data, f has conditional mean m and covariance c :

m(x) = k(x ,X )k(X ,X )−1Y

c(x , y) = k(x , y)− k(x ,X )k(X ,X )−1k(X , y)
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The computationally expensive steps are computing the matrix
k(X ,X ) (which is O(n2)) and inverting it (O(n3)).
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Let’s have a look at K = k(X ,X ) and its inverse Q = K−1:
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The precision matrix Q is tridiagonal... This is due to the Markov
property of f .
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An element of a covariance matrix is K (xi , xj) = cov (f (xi ), f (xj)).
⇒ It depends on the marginal distribution.

Things are different for a precision matrix. for I = {i , j} we have:

QI ,I = cov (f (XI ), f (XI ) | f (Xk), k /∈ I )−1

⇒ It depends on the conditional distribution.

As a consequence:
Qi ,i = var (f (Xi ) | f (Xk), k 6= i)−1

Qi ,j = 0⇔ f (Xi ) and f (Xj) are conditionally independent
given the other observations.
There is no equivalent of the k(., .) for the precision matrix
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It is possible to compute directly the elements of the precision
matrix.

For a GP with Matérn 1/2 kernel evaluated at X , we get:

Q = σ−2
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where λi = exp(−(Xi+1 − Xi )/θ).

Note that Q has a band structure. Complexity is ����O(n2) O(n).

8 / 43



Sampling

Let g ∼ N (0,Q−1) be a vector of length N.

Given µ and Q, one can generate a sample of g by:
1. computing the Cholesky factorisation: Q = LLT O(N3)

2. sampling N independent variables vi ∼ N (0, 1) O(N)

3. computing µ+ L−T v O(N2)

Let’s do it!
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Sampling

We start with a regular grid of 20 points on [0, 1]. We compute the
Matérn 1/2 precision and its Cholesky factor:
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It turns out that L is also a banded matrix!
Cholesky is ����O(n3) O(n).
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Sampling

Computing L−T yields a dense triangular matrix (O(n3))... but
solving LT s = v is easy (O(n))!

LT s v
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-Is this result surprising?
-Not really given the Markov property...
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The banded structure of the precision allowed us to sample in
O(N) time instead of O(N3)!

Question: Can we do the same for inference?

12 / 43



The banded structure of the precision allowed us to sample in
O(N) time instead of O(N3)!

Question: Can we do the same for inference?

12 / 43



Inference with banded precision
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There are many models leading to sparse/banded precisions:

Continuous time
GP with the Markov property
⇒ Brownian motion, ...

Linear Stochastic differential equations df (t) = Ff (t) + dB(t)
⇒ Brownian motion, GPs from the Matérn family

Discrete
State Space Models: ft = At−1ft−1 + εt
⇒ Autoregressive models

Gaussian Graphical models
Gaussian Markov Random Fields (GMRF).
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GMRF are Gaussian vectors indexed by the nodes of a graph. They
are defined directly via their precision matrix, which is typically
sparse.

Example
Let G = ({1, . . . ,N},E ) be an undirected graph with adjacency
matrix A, and degree matrix D.

We introduce the following norm for vectors indexed by the graph
nodes:

||f ||2 =
∑

(i ,j)∈E

(fi − fj)
2 = f tQf

where Q = D − A. This can be seen as a RKHS with kernel Q−1.

15 / 43



GP regression

Let g ∼ N (0,Q−1) be a vector of length N and {A,B} be a
partition of {1, . . . ,N}.

The conditional distribution of gA | gB is N (m,P−1) with:

m = Q−1
A,AQA,BgB

P = QA,A

If Q is banded (say bandwidth l), we can make this efficient by
implementing dedicated operators:

Cholesky factorisation ��
��O(n3) O(nl2)

Triangular Solve ��
��O(n2) O(nl)
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Given a graph with N nodes and a vector Y of n observations at a
subset of nodes X , we consider the following model:

f ∼ N (0,Q−1)

yi = f (xi ) + εi with εi ∼ N (0, τ2) i.i.d.

Where Q is banded and depends on some parameters θ.

Question: Can we efficiently estimate the model parameters θ, τ2?
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If we have observations only at a subset of node, then we can write
K = EQ−1ET . The marginal likelihood of the model is then:

L(θ, τ2) = −n

2
log(2π)− 1

2
log |EQ−1ET + τ2I | − 1

2
Y T (EQ−1ET + τ2I )−1Y

= −n

2
log(2π)− 1

2
log |Q + τ−2ETE |+ 1

2
log |Q| − 1

2
log |τ2I |

− 1
2τ2Y

TY +
1

2τ4Y
TE (Q + τ−2ETE )−1ETY

= −n

2
log(2π)− log |L|+ log |LQ | −

n

2
log τ2 − 1

2τ2Y
TY

+
1

2τ4Y
TEL−TL−1ETY

with LLT = (Q + τ−2ETE ) and LQL
T
Q = Q.

⇒ Previous operators allow doing this in O(Nl2)!
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More fancy models...

Another model we are interested in is:

f ∼ N (0,Q−1)

p(y | f ) =
n∏

i+1

pi (yi | fi )

Example
yi | f (xi ) ∼ B(φ(x)) with φ(x) = exp(f (x))

1+exp(f (x)) :
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In this case, the conditional distribution of f given the data is not
Gaussian anymore, and there is usually no analytical solution.

Example
If we consider the classification example with only two observations
Y = (1, 0)T , we have the following distributions over (f1, f2).

posterior prior likelihood
pf |y=Y (F ) pf (F ) py |f=F (Y )

Source: Nickisch and Rasmussen, Approximations for Binary
Gaussian Process Classification, JMLR 2008.
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Variational Inference

Variational inference consists in optimizing the parameters of a
distribution (say q) such that it approximates pf |y=Y .

The objective function is a lower bound to the marginal likelihood:

log py (Y ) ≥ EF∼q log
py ,f (Y ,F )

q(F )

=
n∑

i=1

EF∼q log pyi |fi=Fi
(Yi )− KL[q ‖ p].

The distribution q is typically chosen to be to be multivariate
Gaussian.

In our settings, pf has a banded precision, and we choose q to be
the pdf of N (mq, (LqL

T
q )−1) where mq is a vector and Lq a banded

lower triangular matrix.
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Variational Inference

Can we compute efficiently
∑n

i=1 EF∼q log pyi |fi=Fi
(Yi )− KL[q ‖ p]?

The first term depends on the marginal distribution of q: we
thus need mq and the diagonal terms of Q−1

q . The expectation
may be obtained analytically or numerically.
The second one is

KL[q ‖ p] =
1
2

(
tr(Q−1

q Qp) + 2
∑
i

log[Lq]ii − log[Lp]ii

+ (mp −mq)TLpL
T
p (mp −mq)− N

)
.

The trace term looks challenging, but it boils down to the sum
of an element-wise product, where Qp is banded. Compute
Q−1

q only inside the band is sufficient!

The new operators required are sparse inverse subset, and a
banded-matrix product. They are O(Nl2) and O(Nl).
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MCMC

MCMC is the classical approach to perform exact inference when
no analytical solutions are available.

Since f typically has high correlations, it is common to apply
whitening f = L−T v and to do the sampling directly on v .

Given a prior on the hyper-parameters, the log joint density is then:

log p(v , θ, y) = log p(v) + log p(θ)

+
n∑

i=1

log p(yi |θ, (L−>Q v)i ).

One can see that it does not require any supplementary operator.
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For all the operators we have listed so far, a version dedicated to
banded matrices can already be found in the literature :)

If we want the methods to be efficient, we need to have access to
the gradients of our objectives :(
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Implementation in an autodifferentiation
framework
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The principle of autodifferentiation libraries such as Theano,
PyTorch or TensorFlow is that each operator comes with an
implementation of its derivative.

Using the chain rule, the autodifferentiation framework can then
compute the derivative of any variable with respect to any other.

In practice, these frameworks typically use reverse mode
differentiation: given a chain of operations X → Y → · · · → c

(with X ,Y matrices), they use
[

∂c
∂Yij

]
to compute

[
∂c
∂Xij

]
.

26 / 43



With the notation Ȳ =
[

∂c
∂Yij

]
, we have

dc =
∑
ij

∂c

∂Yij
dYij = tr(Ȳ TdY ).

X̄ can be obtained using the relation between dY and dX and
permutations inside the trace.

Example
Consider the following operations: X → Y = XXT → c = sum(Y ).

Ȳ is the matrix with entries ∂c
∂Yij

= 1

X̄ is (Ȳ + Ȳ T )X :

dc = tr(Ȳ TdY ) = tr(Ȳ T (dX XT + X dXT ))

= tr(Ȳ TdX XT ) + tr(Ȳ TX dXT )

= tr(XT Ȳ TdX ) + tr(dXXT Ȳ )

= tr(XT Ȳ TdX ) + tr(XT Ȳ dX )

= tr(XT (Ȳ T + Ȳ )dX )
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Applying this to our operators gives

Symbol Input Forward Reverse Mode Sensitivities
P B1, B2 P = B1B2 B̄1 = P(P̄,BT

2 ) B̄2 = P(BT
1 , P̄)

P B , v p = Bv B̄ = O(p̄, v) v̄ = P(BT , p̄)
O m, v O = mvT m̄ = P(Ō, v) v̄ = P(ŌT ,m)

S L, v s = L−1v
v̄ = S(LT , s̄)

L̄T = −O(S(L, v), S(LT , s̄))

S L, B S = L−1B
B̄ = S(LT , S̄)

L̄T = −P(S(L,B),S(LT , S̄)T )

These expressions require the forward operators we already have!

For Cholesky and sparse inverse subset, things are a bit tricky:
⇒ we modified existing non banded code and we used ’tangent’.
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Experiments
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Exp. 1: Mauna Loa CO2 dataset

We looked at the weekly measurement of CO2 concentration at the
Mauna Loa observatory (Hawaii):
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This dataset consists of 3082 observations.
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Exp. 1: Mauna Loa CO2 dataset

We consider 3 implementations of a GP model with exponential
kernel:

GPflow a classic GPR implementation based on covariances
Kalman a Kalman filter implemented in TensorFlow
Custom the proposed framework with banded prec and

custom ops

Note that the model settings correspond to a bandwidth of one.
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Exp. 1: Mauna Loa CO2 dataset

We then compare the execution time for computing the
log-likelihood and its gradients (w.r.t the kernel parameters).

Considering subsets of the data allows us to study the influence of
the number of observations:
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Exp. 1: Mauna Loa CO2 dataset

Similarly, we can study the influence of the precision bandwidth
on the log-likelihood execution time.

To do so we consider more complex models with quasi-periodic
components.
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Exp. 1: Mauna Loa CO2 dataset

The following figure shows the predictions for the model with kernel

k(d) = k3/2(d) + k1/2(d) cos(ωd) + k1/2(d) cos(2ωd)

which has a bandwidth of 5:
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Exp. 2: Porto taxi dataset

This dataset consists of taxi GPS location for a year.

Location of passenger pick-ups.
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Exp. 2: Porto taxi dataset

It has already been successfully modelled by Cox processes:

f ∼ GP(0, k)

yD ∼ P
(∫
D
f (x)2dx

)
This model assumes there is a smooth underlying rate.

Ref: S. John and J. Hensman, Large-scale Cox process
with variational Fourier Features, ICML 2018
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Exp. 2: Porto taxi dataset

We introduce a graph corresponding to the road network and clip
the data to the graph nodes (first three weeks):
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Exp. 2: Porto taxi dataset

We choose the following Cox processes model with a GP indexed by
the graph nodes:

f ∼ N (0,Q−1)

yi ∼ P (exp(fi )wi )

where wi is the length of the edges leading to node i .

Q is define such that the norm it generates is the sum of Matérn
1/2 norm on each edge:

gTQh =
1
σ2

∑
(i,j)∈E

1
1− λi,j

(gi gj)

(
1 −λi,j
−λi,j 1

)(
hi
hj

)
− 1

2
gihi −

1
2
gjhj

where λi ,j = σ2 exp(−di ,j/`) with σ2 = 10, ` = 104.
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Exp. 2: Porto taxi dataset

Using variational inference, we obtain the following posterior on f :
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Exp. 2: Porto taxi dataset

It corresponds to the following predictions for y :
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Exp. 2: Porto taxi dataset

Using the next three weeks of the data as a test set, we compare
the likelihood of three candidates:

Variational inference -15778.5
Hamiltonian Monte Carlo -15873.6

baseline using empirical rates -17146.6

Our models perform better than the baseline, which means that our
initial assumptions make sense!
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Conclusion
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In a nutshell...

The proposed framework is applicable to a wide class of models
such as State space models, Gaussian Markov Random Fields or
Continuous Markovian processes.

It allows to perform state of the art inference: Maximum likelihood,
Variational inference or Hamiltonian Monte Carlo.

The resulting models show interesting behaviours and inference is
fast!
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