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Definition

Definition

A real valued random field φ on (Ω,A,P) indexed by a metric
space (M,d) is called separable, if there exists an at most
countable subset S of M which is dense in (M,d), so that for all
closed intervals C in R, and all open subsets O of M,

{φ(x) ∈ C, x ∈ O} = {φ(x) ∈ C, x ∈ O ∩ S}.

holds. Then S is called a separating set for φ.

Victor Rabiet GRF: simulation and quantification of the error



Continuity
Simulation

Application

Separability
Proving continuity without separability

Alternative definition

Lemma
A real valued random field φ on (Ω,A,P) indexed by (M, d) is separable with
separating set S if and only if one of the following equivalent statements
holds :

(S1) For every open subset O in M,

inf
y∈O∩S

φ(y) = inf
x∈O

φ(x),

and sup
y∈O∩S

φ(y) = sup
x∈O

φ(x) ;

(S′1) For every x ∈ M,
lim inf

y→x, y∈S
φ(y) = lim inf

y→x
φ(x),

and lim inf
y→x, y∈S

φ(y) = lim inf
y→x

φ(x).
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Definitions

Let M be a compact of Rd . (Or M = [−N,N]d , N ∈ N∗) ;

Dn
def
=
{ k

2n , k ∈ Zd
}
∩M,

We define M the following norm : for all x , y ∈ M,

d(x , y)
def
= sup

i∈1,...,d
|xi − yi |.

We will denote δn
def
= 1

2n .
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Properties

We have
Dn ⊂ Dn+1

and
|Dn| ≤

(
2ndiam(M) + 1

)d
,

For x ∈ Dn we define (δn(= 1
2n ))

Cn(x)
def
= {y ∈ Dn, d(x , y) ≤ δn}.

We have the following upperbound

Cn(x) ≤ 3d .
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We define also

πn
def
= {{x , y}, x , y ∈ Dn, d(x , y) ≤ δn}.

Then

|πn| ≤ |Dn| sup
x∈Dn

|Cn(x)| ≤
(
2ndiam(M) + 1

)d3d .

(D) For all n > 1 and x , y ∈ Dn, there exists x ′, y ′ ∈ Dn+1 such
that

d(x , x ′) ≤ δn+1 et d(y , y ′) ≤ δn+1 ;
d(x ′, y ′) ≤ d(x , y).
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Conditions for the random field

We finally set
D =

⋃
n∈N

Dn,

(C) there exist two nondecreasing functions q and r such that

∞∑
n=1

|πn|q(δn) < +∞ (C1)

∞∑
n=1

r(δn) < +∞ (C2)

P
(
|φ(x)− φ(y)| ≥ r

(
d(x , y)

))
≤ q

(
d(x , y)

)
, (C3)

for all x , y ∈ M with d(x , y) < ρ.
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Choice of r

We want r being "as big as possible", along the condition (C2) :
we choose (with ρ < 1 and α > 1)

r(h)
def
=
( 1

ln2(1/h)

)α
=
( 1
| ln2(h)|

)α
, 0 < h < 1 (1)

since then

r(δn) = r
( 1

2n

)
=
( 1

ln2(2n)

)α
=

1
nα
,
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Choice of q

q(h) = h(1+β)d

With

|πn| ≤
(
2ndiam(M) + 1

)d3d

≤ (6diam(M))d2nd

we have q(δn) = 1
2(1+β)dn and

|πn|q(δn) ≤ (6diam(M))d 2nd

2(1+β)dn = Cd
1

(2βd )n

since βd > 0, 2βd > 1, leads to a convergent series.
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Fundamental Lemma

Lemma
Under the conditions (D) and (C), there exists a set Ω′ ⊂ Ω,
P(Ω′) = 1, such that for all ω ∈ Ω′ there exists n(ω) ∈ N such
that

1 for all n ≥ n(ω),

max
(x ,y)∈πn

|φ(x , ω)− φ(y , ω)| ≤ r(δn); (2)

2 for all m ≥ n ≥ n(ω), and every x, y ∈ Dm with d(x , y) ≤ δn
we have

|φ(x , ω)− φ(y , ω)| ≤ 2
m∑

k=n

r(δk ). (3)
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We can state the continuity with respect to the set D

Proposition

Under the conditions (D) and (C) there exists a set Ω′ ⊂ Ω,
P(Ω′) = 1, such that for all ω ∈ Ω′ the restriction of the function
x 7→ φ(x , ω) to D is (uniformly) continuous.
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Theorem
Let φ be continuous in probability so that the conditions (D) and
(C) hold. Then, there exists Ω′ ⊂ Ω, P(Ω′) = 1, such that we
have a uniformly sample continuous modification φ̃ of φ such
that φ̃ = φ on D ∩ Ω′.

Lemma

Suppose that the random field φ satisfies condition (C3) with

lim
x→0

q(x) = lim
x→0

r(x) = 0

(which is true, if the three conditions (C) are satisfied). Then φ
is continuous in probability.
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Exact simulation

Let Sn be a finite index set (size n × n) associated with a
random field −→ Gaussian vector of size n2, denoted by X .
The covariance C is then a n2 × n2-matrix.
We know that if Z is a Gaussian vector of size n2, which
the componants have i.i.d. normal distributions (a « white
noise ») and A is such that A2 = C, then X has the same
law as AZ .
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Examples with Gaussian covariance

The matlab function "simgauss(n)" computes a square of size
(2n + 1)× (2n + 1).
We have the following duration times :

» simgauss(2) ;
Elapsed time is 0.066492 seconds.
» simgauss(3) ;
Elapsed time is 0.244321 seconds.
» simgauss(4) ;
Elapsed time is 2.839962 seconds.
» simgauss(5) ;
Elapsed time is 44.630163 seconds.
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Examples with Gaussian covariance
» simgauss(6) ; Elapsed time is 771.891478 seconds.
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FIGURE: Gaussian kernel, variance : 0.01
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Examples with Gaussian covariance
» simgauss(7) ; Elapsed time is 8551.463134 seconds.
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Examples with Gaussian covariance
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FIGURE: Gaussian kernel, variance : 0.05
» simgauss(7) ; Elapsed time is 8475.642908 seconds.
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Examples with Gaussian covariance

The time is not the only issue of the naïve algorithm :

» simgauss(8) ; Requested 66049x66049 (32.5GB) array exceeds
maximum array size preference. Creation of arrays greater than this
limit may take a long time and cause MATLAB to become
unresponsive. See array size limit or preference panel for more
information.
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Generalized Random Field

We consider the complexification of the Schwartz space S(Rd )

SC(Rd ) = S(Rd )× S(Rd )

Let (Ω,F ,P) be a probability space, and denote by L0
K (P) the

space of real-or complex valued random variables, with K = R
or C.

Definition

A generalized random field on Rd is a K -linear mapping

ϕ : SK (Rd ) 7→ L0
K (P)

where K = R or C.
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Theorem (Minlos’ theorem)

Let Ξ be a characteristic function on S(Rd ), i.e.
1 Ξ is continuous in S(Rd ),
2 Ξ is positive definite,
3 Ξ(0) = 1.

Then there exists a unique probability measure µ on
(S ′(Rd ), σw ), such that for all f ∈ S(Rd )∫

S′(Rd )
ei〈ω,f 〉dµ(ω) = Ξ(f )

i.e. Ξ(f ) is the Fourier transform of a countably additive positive
normalized measure.
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Generalized white noise

Definition

A generalized random field W on Rd is called white noise, if its
characteristic function is given by

ΞWN(f ) = e−
1
2 〈f ,f 〉L2(R

d ) .

Remark : A real-valued white noise on Rd , is a linear mapping
W : S(Rd ) 7→ L0(Ω,F ,P), where (Ω,F ,P) is some probability
space, so that the family {W (f ), f ∈ S(Rd )} is a centered
Gaussian family with

Cov(W (f ),W (g)) = E [W (f )W (g)] = 〈f ,g〉L2(Rd ).

Proposition

W extends to an isometric embedding of L2(Rd ) into L2(P).
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Let ϕ be a generalized random field. We define operations via
dual pairing :

Definition
1 The Fourier transform F and its inverse F−1 are defined on
ϕ via

Fϕ(f ) := ϕ(F−1f )

F−1ϕ(f ) := ϕ(F f )

2 If g ∈ C∞(Rd ) with at most polynomial growth, then

gϕ(f ) := ϕ(gf )
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Construction of Stationary Gaussian Random Fields

Let ϕ be a stationary, real-valued, centered Gaussian random
field with covariance

Cov(ϕ(f ), ϕ(g)) = 〈f ,Cg〉L2(Rd ), f ,g ∈ S(Rd )

with C : S(Rd ) 7→ L2(Rd ). Assume that C is given by an integral
kernel, which by stationarity can be written as

Cf (x) =

∫
Rd

K (x − y)f (y)dy ,

where K is even because of the symmetry of C, and positive
definite.
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Hence if K is continuous,

K (x) =

∫
e−2πixpdΓ(p) (Böchner Theorem)

We assume that Γ has a density γ which is supposed to be
strictly positive and smooth. Then γ

1
2 is a strictly positive

smooth root of γ.
We set

ϕ(f ) := (F−1γ
1
2FW )(f ), f ∈ S(Rd ).
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Discrete Fourier transform

• N1, . . ., Nd will represent even positive integers.
• For all u = (u1, . . . ,ud ) ∈

∏d
i=1J0,Ni − 1K :

FN1,...,Nd (f )(u) :=
1

N1 · · ·Nd

∑
0≤k1≤N1−1

...
0≤kd≤Nd−1

e
2iπ
(

u1k1
N1

+···+ ud kd
Nd

)
f (k1, . . . , kd ).

(4)
We will denote by FS

(Ni )
the "symmetric" discrete Fourier

transform

FS
N1,...,Nd

(g)(v) :=
1

N1 · · ·Nd

∑
−N1

2 ≤k1≤
N1
2 −1

...
−Nd

2 ≤kd≤
Nd
2 −1

e
2iπ
(

v1k1
N1

+···+ vd kd
Nd

)
g(k1, . . . , kd ).
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sym(Ni )
:


∏d

i=1J0,NiK →
∏d

i=1J−
Ni
2 ,

Ni
2 K

(xi ) 7→ (yi ) with
[

yi = xi if xi ∈ J0, Ni
2 − 1K

yi = xi − Ni if xi ∈ J Ni
2 ,NK

(6)
and, conversely,

sym−1
(Ni )

:


∏d

i=1J−
Ni
2 ,

Ni
2 K →

∏d
i=1J0,NiK

(yi ) 7→ (xi ) with
[

xi = yi if yi ∈ J0, Ni
2 − 1K

xi = yi + Ni if yi ∈ J−Ni
2 , 0K

(7)

So, while working on a function c :
∏d

i=1J−
Ni
2 ,

Ni
2 − 1K→ R, we

will use the function

c̃(x) := c
(
sym(Ni )

(x)
)
, ∀x ∈

d∏
i=1

J0,NiK.
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Lemma

FS
(Ni )

(f )(x) = F(Ni )(f ◦ sym(Ni )
)(sym−1

(Ni )
(x)).

We can state the lemma on which will be built the algorithm :

Lemma

Let E =:
∏d

i=1J0,NiK, h : E → C and (Ap)p∈E , (Bq)q∈E be two
independent white noises. The centered Gaussian Random
field indexed on

∏d
i=1J0,

Ni
2 K defined by

G(x) := <
(
F−1
(Ni )

(
(A + iB)h

)
(x)
)

(8)

has the following covariance function :

E [G(x)G(y)] = <
(
F−1
(Ni )

(∣∣h∣∣2)(sym−1
(Ni )

(y − x))
)

(9)
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Lemma

FS
(Ni )

(f )(x) = F(Ni )(f ◦ sym(Ni )
)(sym−1

(Ni )
(x)).

We can state the lemma on which will be built the algorithm :

Lemma

Let E =:
∏d

i=1J0,NiK, h : E → C and (Ap)p∈E , (Bq)q∈E be two
independent white noises. The centered Gaussian Random
field indexed on

∏d
i=1J0,

Ni
2 K defined by

G(x) := <
(
F−1
(Ni )

(
(A + iB)h

)
(x)
)

(8)

has the following covariance function :

E [G(x)G(y)] = <
(
F−1
(Ni )

(∣∣h∣∣2)(sym−1
(Ni )

(y − x))
)

(9)
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Heuristic of the Algorithm

Let c : (Rn)2 → R be a (continuous) covariance function
(i.e. symmetric definite positive) and we assume that
function to be stationary (i.e. invariant with respect to
translation).
Notation : c(h) := c(0,h), h ∈ Rn.

1 This last function, according to a consequence of the
Böchner’s Theorem has a real positive valued Fourier’s
transform.

2 On the other hand, if c has a compact support, or if its tails
norm decrease sufficiently fast to 0, the fast Fourier
transform can be seen as an approximation of its Fourier’s
transform.
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Using those two facts, we can consider that the values of the
discrete Fourier transform of c are real and (close to being)
positive and, with h(x) :=

√
F(Ni )(c)(x) ∈ R+, the Lemma 5

provides a Gaussian Random Field with covariance c

E [G(x)G(y)] = <
(
F−1
(Ni )

(∣∣h∣∣2)(y − x)
)

= <
(
F−1
(Ni )

(
F(Ni )(c)

)
(y − x)

)
= <

(
c(x − y)

)
= c(x − y) = c(x , y).

Remark
In the general case (i.e. F(Ni )(c)(x) ∈ R, because of the
symmetry of c) we have

E [G(x)G(y)] = <
(
F−1
(Ni )

(∣∣F(Ni )(c)
∣∣)(y − x)

)
.
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Unidimensional case

The idea is to approximate N values in [−1
2 ,

1
2 ] of a Fourier

transform of a function f (assuming that the function of interest
has negligible values outside of [−1

2 ,
1
2 ]) by∫ 1

2

− 1
2

ei x
N y f (y) dy , x ∈

q
− N

2 ,
N
2 − 1

y
. (10)

then by

1
N
Fs

N(fN)(x)
def
=

1
N

N
2 −1∑

k=−N
2

eix k
N fN(k) (11)

(with fN(k)
def
= f ( k

N )).
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Error quantification

Proposition

Let N ∈ 2N, c : E → C and (Ap)p∈E , (Bq)q∈E be two independent
white noises. The centered Gaussian Random field indexed on J0, N

2 K
defined by

G(x) := <
(
F−1

(Ni )

(
(A + iB)

√
FN(c)(x)

)
(x)
)

(12)

has a covariance function cG such that, for all x , y ∈ J0, N
2 K,

|c(x , y)− cG(x , y)| ≤ 2nN(εc + εN) (13)

where nN stands for the numbers of x such that FN(c)(x) < 0 and
with εc such that

sup
x∈
[
− 1

2 ,
1
2

]
∣∣∣∣ ∫

R\
[
− 1

2 ,
1
2

] ei2πxy c(y) dy
∣∣∣∣ ≤ εc .
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with

εN ≤
|c( 1

2 )|
N

+

p∑
k=1

b2k

N2k (2k)!
(2π)2k−122k+1||c||2k+1,i

( 1
2

)
+

1
N2p+1(2p + 1)

RN,p

(14)

where ||c||2k+1,o(x)
def
=

2k+1∑
l=1

l impair

∣∣c(l)(x)
∣∣ and with

∣∣Rn,p
∣∣ ≤ (4π)2p+1 sup

t∈[− 1
2 ,

1
2 ]

l∈J0,2p+1K

∣∣c(l)(t)
∣∣ ∫ 1

0
|B2p+1(u)|du, (15)

where Bi (resp. bi
def
= Bi(0)) are the Bernoulli polynomials (resp.

Bernoulli numbers).
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Example : the exponential covariance case

c(x)
def
= e−

x2

2σ2 .

we have (with p = 0)

|c(x , y)− cG(x , y)| ≤ 2nN

(
e−

1
8σ2
(

4 +
1
N

)
+

1
2N

( 1
σ2 + 2π

))
︸ ︷︷ ︸

eN

.

For N = 1000 we have :
σ 0.09 0.1 0.11 0.12 0.13 0.14 0.15
e1000 0.0649 0.0532 0.0446 0.0385 0.0352 0.0355 0.0408

For N = 10000
σ 0.09 0.1 0.11 0.12 0.13 0.14 0.15
e10000 0.0065 0.0053 0.0046 0.0045 0.0057 0.0097 0.0180
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Example, the exponential covariance case : error
(p=0, N=1000)

1 2 3 4 5 6 7
0.035

0.04

0.045

0.05

0.055

0.06

0.065

Victor Rabiet GRF: simulation and quantification of the error



Continuity
Simulation

Application

Exact simulation
Exact simulation
Algorithm and quantification of the error

Example, the exponential covariance case : error
(p=0, N=10000)

1 2 3 4 5 6 7
0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
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Example, the exponential covariance case

For p = 1, it follows

εN ≤
∣∣c(1

2)
∣∣

N
+

b2

2N2 2π23
(∣∣c′(1

2)
∣∣+
∣∣c′′′(1

2)
∣∣)+

1
3N3 RN3

≤ e−
1

8σ2

(
1
N

+
2π

3N2

( 1
σ2 +

3
σ4 +

1
4σ6

))
+

1
N3

( 1
σ2 +

3
2σ4 +

1
8σ6

)
For N = 1000 we have :

σ 0.04 0.05 0.06 0.07 0.08 0.09
e1000 0.0104 0.00275 9.32× 10−4 3.751× 10−4 1.713× 10−4 8.71× 10−5

and for σ = 0.095, e1000 = 6.7484× 10−5.

For N = 10000
σ 0.05 0.06 0.07 0.08 0.09
e10000 2.75× 10−6 9.32× 10−7 3.751× 10−7 1.845× 10−7 8.83× 10−7
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Example, the exponential covariance case : error
(p=1, N=1000)

1 2 3 4 5 6

#10 -3
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3
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Example, the exponential covariance case : error
(p=1, N=10000)

1 1.5 2 2.5 3 3.5 4 4.5 5

#10 -6
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The compact support case

When the covariance function has a compact support included
in [−1

2 ,
1
2 ], the speed can be improved (especially when the

derivatives are uniformly bounded), since we have for some
p ∈ N∗, if c is a Cp function,∫ 1

2

− 1
2

ei x
N y f (y) dy − 1

N
Fs

N(fN)(x) =
RN,p

N2p+1(2p + 1)

with ||Rn,p|| ≤ M2p+1
∫ 1

0 |B2p+1(t)|dt .
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The multidimensional case

We consider a continuous covariance function c : R2 → R
belonging to L1(R2).
Let εc be such that∫

R2\[− 1
2 ,

1
2 ]

2
|c(u, v)|du dv ≤ εc .

Victor Rabiet GRF: simulation and quantification of the error



Continuity
Simulation

Application

Exact simulation
Exact simulation
Algorithm and quantification of the error

∣∣∣∣ ∫
[− 1

2 ,
1
2 ]

2
g(u, v) du dv − 1

MN

N−1∑
k=0

M−1∑
l=0

g(uk , vl )

∣∣∣∣
≤ 1

2N
sup

v∈[− 1
2 ,

1
2 ]

∣∣g( 1
2 , v
)
− g

(
− 1

2 , v
)∣∣+

1
2M

sup
u∈[− 1

2 ,
1
2 ]

∣∣g(u, 1
2

)
− g

(
u,− 1

2

)∣∣
+

p∑
k=1

b2k

(2k)!

( 1
N2k sup

v∈[− 1
2 ,

1
2 ]

∣∣g(2k−1)( 1
2 , v
)
− g(2k−1)(− 1

2 , v
)∣∣

+
1

M2k sup
u∈[− 1

2 ,
1
2 ]

∣∣g(2k−1)(u, 1
2

)
− g(2k−1)(u,− 1

2

)∣∣)
+

1
N2p+1(2p + 1)

sup
v∈[− 1

2 ,
1
2 ]

Rv
N,p +

1
M2p+1(2p + 1)

sup
u∈[− 1

2 ,
1
2 ]

Ru
M,p

=:εN,M .

Victor Rabiet GRF: simulation and quantification of the error



Continuity
Simulation

Application

Exact simulation
Exact simulation
Algorithm and quantification of the error

Example : the exponential covariance case

c(u, v) = e−
u2+v2

2σ2

g(u, v) = c(u, v)e
2iπ
(

u x
N +v y

M

)

g′1(u, v) = − u
σ2 e−

u2+v2

2σ2 e
2iπ
(

u x
N +v y

M

)
+ 2iπ

x
N

g(u, v)

= g(u, v)
(
− u
σ2 + 2iπ

x
N

)
.

g′′1 (u, v) = g(u, v)
(
− u
σ2 + 2iπ

x
N

)2
+
−1
σ2

= g(u, v)

((
− u
σ2 + 2iπ

x
N

)2
− 1
σ2

)
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And,

g′′′1 (u, v) = g(u, v)

((
− u
σ2 + 2iπ

x
N

)3
− 3
σ2

(
− u
σ2 + 2iπ

x
N

))
It leads to the following upperbound :

|g′′′1 (u, v)| ≤ |c(u, v)|
(

4
|u|3

σ6 + 4(2π)3 + 3
|u|
σ4 + 6π

)
Exemples:

For N = 1024 we have the following results :

σ 0.1 0.11 0.12 0.13 0.14 0.15
e2

1024 0.00097 0.00055 0.00033 0.000212 0.000183 0.000336
σ 0.16 0.17 0.18 0.19 0.2
e2

1024 0.000995 0.0029 0.0073 0.019 0.031
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The human eye

FIGURE: L’œil en coupe
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Corneal endothelium

Definition (Corneal endothelium)
It separates the cornea from the aqueous humor. It is a cellular
monolayer comprising about 500,000 cells whose quality and
quantity vary with age.
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Morphology

The endothelium is composed of relatively regular hexagonal (or
almost) cells.

However, there are some more pronounced irregularities :

on the edges (larger cells) ;
in case of pathologies (e.g. Cornea guttata) ;
in case of transplant, . . .
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Voronoï Partition

Question
How will we simulate the cells ?

If we already have a set of points, we can make a Voronoï
partition

• For each point p of the surface S, the Voronoï
cell V (p) of p is the set of the points closer to p
than any other points of S.
• The Voronoï partition V (S) is the partition made
by the Voronoï cells.
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Poisson point process and Voronoï partion

Random space points are most commonly generated using a
Poisson point process. . .

. . .which is rather irregular . . .
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Superposition an functions with compact support

We use the combination

G1(x) + f (x)G2(x)

where f is a compact support function :
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Non-stationary gaussian random field : "large center"
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Voronoï partition with high centred density
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Weak local density

We use a combination

G1(x) + f (x)G2(x)

where f is the complementary of a compact support function
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Voronoï weak local density I
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Voronoï weak local density II
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Random field for simulating the Cornea Guttata
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Conclusion and perspective

Quantification of the error
and combination of Gaussian stationary random fields
(with related "well chosen" functions belonging to the
algebra generated by smooth functions with compact
support)

provide an easy to use and interesting modelisation tool, at
least in the medical field in which we had to work.

We are working now with a combination of stationary
random fields with multiplicative functions taken in wavelet
basis.
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Thank you for the invitation !
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