# Constrained Gaussian processes: methodology, theory and applications

Hassan MAATOUK hassan.maatouk@univ-rennes2.fr

Workshop on Gaussian Processes, November 6-7, 2017, St-Etienne (France)



General introduction of GP regression and motivating example

- 2 Gaussian processes with inequality constraints
  - Finite-dimensional approximation of GPs
  - Simulation of truncated Gaussian vectors
- Generalization of the Kimeldorf-Wahba correspondence
- Real application in Insurance and Finance : estimation of discount factors and default probabilities
  - Discount factors
  - Default probabilities 'Credit Default Swaps (CDS)'

#### Noisy observations case

### General introduction of GP regression and motivating example

- 2) Gaussian processes with inequality constraints
  - Finite-dimensional approximation of GPs
  - Simulation of truncated Gaussian vectors
- Generalization of the Kimeldorf-Wahba correspondence
- Real application in Insurance and Finance : estimation of discount factors and default probabilities
  - Discount factors
  - Default probabilities 'Credit Default Swaps (CDS)'

#### 5 Noisy observations case

## Gaussian Process Regression (GPR) or Kriging

• The following nonparametric function estimation is considered

$$y = f(\boldsymbol{x}), \qquad \boldsymbol{x} \in \mathbb{R}^d.$$

- Observations :  $f(\boldsymbol{x}^{(i)}) = y_i, \ i = 1, \dots, n.$
- In statistical framework, y is viewed as a realization of a GP Y :

$$Y(\boldsymbol{x}) := \eta(\boldsymbol{x}) + Z(\boldsymbol{x}),$$

where  $\eta$  is the mean and Z is a zero-mean GP with covariance function K.

• The conditional process remains a GP

$$\left\{Y(\boldsymbol{x}) \mid Y(\boldsymbol{x}^{(1)}) = y_1, \dots, Y(\boldsymbol{x}^{(n)}) = y_n\right\} \sim \mathcal{N}\left(\zeta(\boldsymbol{x}), \tau^2(\boldsymbol{x})\right),$$

with

$$\begin{cases} \zeta(\boldsymbol{x}) = \eta(\boldsymbol{x}) + \boldsymbol{k}(\boldsymbol{x})^\top \mathbb{K}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}) \\ \tau^2(\boldsymbol{x}) = K(\boldsymbol{x}, \boldsymbol{x}) - \boldsymbol{k}(\boldsymbol{x})^\top \mathbb{K}^{-1} \boldsymbol{k}(\boldsymbol{x}) \end{cases}$$
$$\boldsymbol{\mu}_i = \eta(\boldsymbol{x}^{(i)}), \ \mathbb{K}_{i,j} = K(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}), \ i, j = 1, \dots, n \text{ and } (\boldsymbol{k}(\boldsymbol{x}))_i = \left(K(\boldsymbol{x}, \boldsymbol{x}^{(i)})\right).$$

Let  $f(x) = \sqrt{x} \times sin(5\pi x), x \in [0, 1]$  be a real function.



## Motivating example



э

イロン イロン イヨン イヨン

## Motivating example



November 7, 2017, St-Etienne 6 / 4

イロト イヨト イヨト イヨ

## Motivating example



#### General introduction of GP regression and motivating example

#### 2 Gaussian processes with inequality constraints

- Finite-dimensional approximation of GPs
- Simulation of truncated Gaussian vectors

### Generalization of the Kimeldorf-Wahba correspondence

- Real application in Insurance and Finance : estimation of discount factors and default probabilities
  - Discount factors
  - Default probabilities 'Credit Default Swaps (CDS)'

#### Noisy observations case

## Gaussian processes with inequality constraints

- I is the space of interpolation conditions :  $f(x^{(i)}) = y_i, i = 1, ..., n$ .
- C is the space of convexity constraints (such as boundedness, monotonicity and convexity).
- $(Y(\boldsymbol{x}))_{\boldsymbol{x}\in[0,1]^d}$  is a zero-mean GP with covariance function :

$$K(\boldsymbol{x}, \boldsymbol{x}') = \operatorname{Cov}(Y(\boldsymbol{x}), Y(\boldsymbol{x}')) = \mathbb{E}(Y(\boldsymbol{x})Y(\boldsymbol{x}')).$$

## Gaussian processes with inequality constraints

- I is the space of interpolation conditions :  $f(x^{(i)}) = y_i, i = 1, ..., n$ .
- C is the space of convexity constraints (such as boundedness, monotonicity and convexity).
- $(Y(\boldsymbol{x}))_{\boldsymbol{x}\in[0,1]^d}$  is a zero-mean GP with covariance function :

$$K(\boldsymbol{x}, \boldsymbol{x}') = \operatorname{Cov}(Y(\boldsymbol{x}), Y(\boldsymbol{x}')) = \mathbb{E}(Y(\boldsymbol{x})Y(\boldsymbol{x}')).$$

• Formulation of the problem : simulate the Gaussian process Y conditionally to :

$$Y(x^{(i)}) = y_i, \quad i = 1, \dots, n,$$
  

$$Y \in C.$$

$$(I \cap C)$$

## Gaussian processes with inequality constraints

- I is the space of interpolation conditions :  $f(x^{(i)}) = y_i, i = 1, ..., n$ .
- C is the space of convexity constraints (such as boundedness, monotonicity and convexity).
- $(Y(\boldsymbol{x}))_{\boldsymbol{x}\in[0,1]^d}$  is a zero-mean GP with covariance function :

$$K(\boldsymbol{x}, \boldsymbol{x}') = \operatorname{Cov}(Y(\boldsymbol{x}), Y(\boldsymbol{x}')) = \mathbb{E}(Y(\boldsymbol{x})Y(\boldsymbol{x}')).$$

• Formulation of the problem : simulate the Gaussian process Y conditionally to :

$$Y(x^{(i)}) = y_i, \quad i = 1, \dots, n,$$
  

$$Y \in C.$$

$$(I \cap C)$$

### Remark

This is a difficult problem because the conditional process  $Y \mid Y \in I \cap C$  is not a GP in general.

Hassan MAATOUK / Rennes 2

## Finite-dimensional approximation of GPs

 Methodology : we develop a finite-dimensional approximation of GPs of the form

$$Y^N(\boldsymbol{x}) := \sum_{j=0}^N \xi_j \phi_j(\boldsymbol{x}),$$

with  $\xi = (\xi_0 \cdots \xi_N)^\top \sim \mathcal{N}(\mathbf{0}, \Gamma^N)$  and  $\{\phi_j\}$  the deterministic basis functions.

• • • • • • • • • • •

## Finite-dimensional approximation of GPs

• Methodology : we develop a finite-dimensional approximation of GPs of the form

$$Y^N(\boldsymbol{x}) := \sum_{j=0}^N \xi_j \phi_j(\boldsymbol{x}),$$

with  $\xi = (\xi_0 \cdots \xi_N)^\top \sim \mathcal{N}(\mathbf{0}, \Gamma^N)$  and  $\{\phi_j\}$  the deterministic basis functions.

### Fundamental property of the basis functions $(\phi_j)_{j=0,\cdots,N}$

we choose the basis functions  $\{\phi_j\}$  such that

- $Y^N(\cdot)$  is positive  $\iff \xi_j \ge 0 \ ; \ 0 \le j \le N.$ •  $Y^N(x) \in [a, b] \iff a \le \xi_j \le b \ ; \ 0 \le j \le N.$
- $Y^N({\boldsymbol{.}})$  is non-decreasing  $\iff \xi_j \ge 0 \ ; \ 0 \le j \le N.$
- $Y^N(.)$  is convex  $\iff \xi_j \ge 0 \ ; \ 0 \le j \le N.$

## Boundedness constraints

$$C = \{ f : [0,1] \longrightarrow \mathbb{R} : a \le f(x) \le b \}.$$

② The basis functions (h<sub>j</sub>)<sub>j</sub> are the hat functions associated to the knots (u<sub>j</sub>)<sub>j=0,...,N</sub> such that : h<sub>j</sub>(u<sub>k</sub>) = δ<sub>j,k</sub>.



•  $Y^{N}(x) = \sum_{j=0}^{N} \xi_{j}h_{j}(x)$  and  $Y^{N}(u_{k}) = \sum_{j=0}^{N} \xi_{j}h_{j}(u_{k}) = \sum_{j=0}^{N} \xi_{j}\delta_{j,k} = \xi_{k}.$ •  $Y^{N}(x) = \sum_{j=0}^{N} Y^{N}(u_{j})h_{j}(x)$  is a piecewise linear function.  $Y^{N}(x) = \sum_{j=0}^{N} Y^{N}(u_{j})h_{j}(x) \in [a, b], \iff \xi_{j} = Y^{N}(u_{j}) \in [a, b], \ j = 0, \dots, N.$ 

## Covariance matrix of the random coefficients $\xi_j$

By the special choose of the basis functions, we have

$$Y^{N}(x) := \sum_{j=0}^{N} \xi_{j} h_{j}(x) = \sum_{j=0}^{N} Y^{N}(u_{j}) h_{j}(x).$$

To ensure the almost surly uniform convergence of  $Y^N$  to Y we suppose :  $Y^N(u_j) = Y(u_j)$ . Thus,

$$Y^N(x) = \sum_{j=0}^N \frac{Y(u_j)h_j(x)}{k_j}.$$

4 D b 4 A b

## Covariance matrix of the random coefficients $\xi_j$

By the special choose of the basis functions, we have

$$Y^{N}(x) := \sum_{j=0}^{N} \xi_{j} h_{j}(x) = \sum_{j=0}^{N} Y^{N}(u_{j}) h_{j}(x).$$

To ensure the almost surly uniform convergence of  $Y^N$  to Y we suppose :  $Y^N(u_j) = Y(u_j)$ . Thus,

$$Y^N(x) = \sum_{j=0}^N \frac{Y(u_j)h_j(x)}{k_j}.$$

$$\begin{split} \Gamma^N_{i,j} &= \quad \operatorname{Cov}(\xi_i,\xi_j) = \operatorname{Cov}(Y(u_i),Y(u_j)) \\ &= \quad K(u_i,u_j), \end{split}$$

with K the covariance function of the original Gaussian process Y.

$$\operatorname{Cov}\left(Y^N(x), Y^N(x')\right) = h(x)^\top \Gamma^N h(x).$$



## Monotonicity constraints

The basis functions are choose as the primitive of the hat functions :  $\phi_j(x):=\int_0^x h_j(t)dt.$ 



In that case, the finite-dimensional approximation of GPs can be reformulated as

$$Y^{N}(x) := \zeta + \sum_{j=0}^{N} \xi_{j} \phi_{j}(x) = Y(0) + \sum_{j=0}^{N} Y'(u_{j}) \phi_{j}(x).$$
Thus,
$$\Gamma_{j,k}^{N} = \operatorname{Cov}(\xi_{j},\xi_{k}) = \operatorname{Cov}(Y'(u_{j}),Y'(u_{k})) = \frac{\partial^{2} K(u_{j},u_{k})}{\partial \partial x \partial x' + \langle \cdot \cdot \cdot \rangle} = 0$$

# New formulation of the problem - case of monotonicity constraints

The simulation of  $Y^N$  conditionally to interpolation and inequality constraints is equivalent to the simulation of the Gaussian vector  $\xi$  such that

$$\begin{split} (A\xi)_i &:= \zeta + \sum_{j=0}^N \xi_j \phi_j \left( x^{(i)} \right) = y_i, \quad i = 1, \dots, n \quad \text{(n interpolation conditions)} \quad I_\xi \\ \xi_j &\geq 0, \quad j = 0, \dots, N \quad \text{(N+1 inequality constraints)} \quad C_{\text{coef}} \\ \text{rith } A_{i,j} &:= \phi_j \left( x^{(i)} \right) \text{ and } A_{i,1} = 1, \quad i = 1, \dots, n. \end{split}$$

# New formulation of the problem - case of monotonicity constraints

The simulation of  $Y^N$  conditionally to interpolation and inequality constraints is equivalent to the simulation of the Gaussian vector  $\xi$  such that

$$\begin{split} (A\xi)_i &:= \zeta + \sum_{j=0}^N \xi_j \phi_j \left( x^{(i)} \right) = y_i, \quad i = 1, \dots, n \quad \text{(n interpolation conditions)} \quad I_\xi \\ \xi_j &\geq 0, \quad j = 0, \dots, N \quad \text{(N+1 inequality constraints)} \quad C_{\text{coef}} \\ \text{th } A_{i,j} &:= \phi_j \left( x^{(i)} \right) \text{ and } A_{i,1} = 1, \quad i = 1, \dots, n. \end{split}$$

The problem is reduced to simulate a truncated Gaussian vector restricted to convex sets.

W

< □ > < 同 >

# New formulation of the problem - case of monotonicity constraints

The simulation of  $Y^N$  conditionally to interpolation and inequality constraints is equivalent to the simulation of the Gaussian vector  $\xi$  such that

$$\begin{split} (A\xi)_i &:= \zeta + \sum_{j=0}^N \xi_j \phi_j \left( x^{(i)} \right) = y_i, \quad i = 1, \dots, n \quad \text{(n interpolation conditions)} \quad I_\xi \\ \xi_j &\geq 0, \quad j = 0, \dots, N \quad \text{(N+1 inequality constraints)} \quad C_{\text{coef}} \\ \text{th } A_{i,j} &:= \phi_j \left( x^{(i)} \right) \text{ and } A_{i,1} = 1, \ i = 1, \dots, n. \end{split}$$

The problem is reduced to simulate a truncated Gaussian vector restricted to convex sets.

wi



## Mean and maximum of the posterior distribution

### Definition (mean a posteriori estimate)

The mean of the posterior distribution is defined as

$$m_{\mathsf{pos}}^N(x) := \mathbb{E}\left(Y^N(x) \mid Y^N(x^{(i)}) = y_i, \ \xi \in C_{\mathsf{coef}}\right) = \phi(x)^\top \xi_{\mathsf{pos}},$$

where  $\xi_{pos} = \mathbb{E}\left(\xi \mid \xi \in I_{\xi} \cap C_{coef}\right)$ .

## Mean and maximum of the posterior distribution

### Definition (mean a posteriori estimate)

The mean of the posterior distribution is defined as

$$m_{\mathsf{pos}}^N(x) := \mathbb{E}\left(Y^N(x) \mid Y^N(x^{(i)}) = y_i, \ \xi \in C_{\mathsf{coef}}\right) = \phi(x)^\top \xi_{\mathsf{pos}},$$

where  $\xi_{pos} = \mathbb{E}\left(\xi \mid \xi \in I_{\xi} \cap C_{coef}\right)$ .

Let  $\mu$  be the mode of the truncated Gaussian vector  $\{\xi \mid \xi \in I_{\xi} \cap C_{coef}\}$ . Then

$$\mu = \arg\min_{\xi \in I_{\xi} \cap C_{coff}} \left(\frac{1}{2} \xi^{\top} (\Gamma^N)^{-1} \xi\right),\tag{1}$$

with  $\Gamma^N$  the covariance matrix of the Gaussian vector  $\boldsymbol{\xi}.$ 

### Definition (maximum a posteriori estimate)

The maximum a posterior (MAP) estimate is defined as

$$M_{\mathrm{pos}}^N(x) := \sum_{j=0}^N \mu_j \phi_j(x), \qquad \mu = (\mu_0, \dots, \mu_N)^\top \text{ is computed from (1)}.$$

## Truncated normal variables



November 7, 2017, St-Etienne 15 / 4

э

イロト イヨト イヨト イヨ

## Truncated normal variables



### Proposition

Let  $\tilde{f}$  and  $\tilde{g}$  be two pseudo-density functions defined as

$$\tilde{f}(x) := f(x \mid 0, \Sigma) 1_{x \in C}$$
 and  $\tilde{g}(x) := g(x \mid \mu^*, \Sigma) 1_{x \in C}$ .

The optimal constant k such that  $\tilde{f}(x) \leq k\tilde{g}(x), x \in C$  is equal to

$$k^* = \exp\left(-\frac{1}{2}(\mu^*)^\top \Sigma^{-1} \mu^*\right)$$

# Simulation of the truncated multivariate Gaussian random variables

## Accept/Rejection algorithm

- **(**) Generate X with density g while  $X \notin C$ .
- **2** Generate U uniformly on [0,1] and accept X if  $U \le e^{(\mu^*)^T \Sigma^{-1} \mu^* X^T \Sigma^{-1} \mu^*}$ . Otherwise, repeat from step 1.



FIGURE: Crude rejection sampling with 2% acceptance rate (left) and the so-called rejection sampling from the mode (RSM) with 20% acceptance rate (right)

Hassan MAATOUK / Rennes 2



















## Illustrative example - boundedness constraints case

Gaussian process approximation :

$$Y^{N}(x) := \sum_{j=0}^{N} \xi_{j} h_{j}(x) = \sum_{j=0}^{N} \frac{Y(u_{j})}{h_{j}(x)}.$$
(2)

< □ > < 同 >

## Illustrative example - boundedness constraints case

Gaussian process approximation :

$$Y^{N}(x) := \sum_{j=0}^{N} \xi_{j} h_{j}(x) = \sum_{j=0}^{N} Y(u_{j}) h_{j}(x).$$
(2)



## Illustrative example - boundedness constraints case

Gaussian process approximation :

$$Y^{N}(x) := \sum_{j=0}^{N} \xi_{j} h_{j}(x) = \sum_{j=0}^{N} \frac{Y(u_{j})}{h_{j}(x)}.$$
(2)

- The basis functions  $h_j$ , j = 0, ..., N are the hat functions.
- $Y^N(x) \in [a, b]$  if and only if  $Y(u_j) \in [a, b]$ .
- The sample paths verify boundedness constraints in the entire domain.
- The mean and the maximum of the posterior distribution respect boundedness constraints contrarily to the unconstrained kriging mean.



## Illustrative example - convexity constraints case

The Gaussian process approximation is equal to

$$Y^{N}(x) := Y(0) + xY'(0) + \sum_{j=0}^{N} Y''(u_{j})\varphi_{j}(x).$$
(3)

• 
$$\varphi_j := \int_0^x \left( \int_0^t h_j(u) du \right) dt.$$

- $Y^N$  is convex if and only if  $Y''(u_j) \ge 0$ .
- The simulated paths respect convexity constraints in the entire domain.
- The mean and the maximum of the posterior distribution respect convexity constraints contrarily to the unconstrained kriging mean.



## Isotonicity in two dimensions

The input  $x = (x_1, x_2)$  is supposed to be in  $[0, 1]^2$ . The monotonicity constraints with respect to the two inputs is defined as

$$orall x_1 \in [0,1], \; x_2 \longmapsto f(x_1,x_2)$$
 is monotone

and

$$\forall x_2 \in [0,1], x_1 \longmapsto f(x_1,x_2)$$
 is monotone.



Hassan MAATOUK / Rennes 2

November 7, 2017, St-Etienne 20 / 4

## Isotonicity in two dimensions

The finite-dimensional approximation of GPs is defined as

$$Y^{N}(x_{1}, x_{2}) := \sum_{i,j=0}^{N} \frac{Y(u_{i}, u_{j})h_{i}(x_{1})h_{j}(x_{2}),$$
(4)

where  $h_j, \ j = 0, \ldots, N$  are the hat functions.

 $Y^N$  is monotone with respect to the two inputs if and only if the random coefficients  $Y(u_i,u_j)$  sverify

• 
$$Y(u_{i-1}, u_j) \leq Y(u_i, u_j)$$
  
 $Y(u_i, u_{j-1}) \leq Y(u_i, u_j),$   
 $i, j = 1, \dots, N.$   
•  $Y(u_{i-1}, u_0) \leq Y(u_i, u_0), \quad i = 1, \dots, N.$ 

• 
$$Y(u_0, u_{j-1}) \le Y(u_0, u_j), \quad j = 1, \dots, N.$$



## Isotonicity with respect to only one variable

The finite-dimensional approximation of GPs

$$Y^{N}(x_{1}, x_{2}) = \sum_{i,j=0}^{N} Y(u_{i}, u_{j}) h_{i}(x_{1}) h_{j}(x_{2})$$
(5)

respects monotonicity constraints for only the first variable if and only if :

•  $Y(u_{i-1}, u_j) \le Y(u_i, u_j), \quad i = 1, ..., N \text{ and } j = 0, ..., N.$ 



Hassan MAATOUK / Rennes 2

Gaussian processes with inequality constraints

November 7, 2017, St-Etienne 22 / 47

#### General introduction of GP regression and motivating example

- 2 Gaussian processes with inequality constraints
  - Finite-dimensional approximation of GPs
  - Simulation of truncated Gaussian vectors

### 3 Generalization of the Kimeldorf-Wahba correspondence

- Real application in Insurance and Finance : estimation of discount factors and default probabilities
  - Discount factors
  - Default probabilities 'Credit Default Swaps (CDS)'

#### Noisy observations case

THE 1 1

## Kimeldorf-Wahba correspondence

We consider the following optimization problem :

 $\min_{h\in H\cap I}\|h\|_{H}^{2},$ 

- H the RKHS with r.k. K which is the covariance kernel of Y,
- *I* the space of functions which verify the interpolation condition.

(Q)

We consider the following optimization problem :

## $\min_{h\in H\cap I} \|h\|_H^2,$

- H the RKHS with r.k. K which is the covariance kernel of Y,
- *I* the space of functions which verify the interpolation condition.

### Theorem (Kimeldorf and Wahba 1970)

The problem (Q) has the kriging mean as an unique solution :

$$h_{opt}(x) = \boldsymbol{k}(x)^{\top} \mathbb{K}^{-1} \boldsymbol{y}, \qquad (6)$$

where  $\boldsymbol{y} = (y_1, \dots, y_n)^{\top}$ ,  $\boldsymbol{k}(x) = (K(x^{(i)}, x))_i$  and  $\mathbb{K}_{i,j} = (K(x^{(i)}, x^{(j)}))$ .

(O

## Generalization of the Kimeldorf-Wahba correspondence

We consider the following convex optimization problem :

$$\min_{h \in H \cap I \cap C} \|h\|_{H}^{2}, \tag{P}$$

- H the RKHS with r.k. K which is the covariance kernel of Y,
- I the space of functions which verify the interpolation condition,
- C the space of functions which verify inequality constraints (such as monotonicity, convexity, ...).

### Theorem (Bay, Grammont, Maatouk, 2016. Electron. J. Statist.)

The maximum a posteriori estimate (MAP) converges to the constrained spline

$$M_{\mathsf{pos}}^N(x) := \sum_{j=0}^N \mu_j \phi_j(x) \xrightarrow[N \to +\infty]{} h_{opt} := \arg \min_{h \in H \cap I \cap C} \|h\|_H^2.$$

4 **A b b b b b** 

## Numerical illustration of the new correspondence



 $\ensuremath{\mathsf{Figure:}}$  The unconstrained kriging mean coincides with the MAP in the right figure but not in the left one

## Numerical illustration of the new correspondence



 $\ensuremath{\mathsf{Figure:}}$  The unconstrained kriging mean coincides with the MAP in the right figure but not in the left one

## Numerical illustration of the new correspondence



 $\ensuremath{\mathsf{Figure:}}$  The unconstrained kriging mean coincides with the MAP in the right figure but not in the left one

## Constrained cubic spline interpolation

 The cubic spline is the function minimises the linear enegry criterion (LE) (see, e.g., [Wolberg and Alfy, 2002]) :

$$E_L = \int_0^1 \left( h''(t) \right)^2 dt.$$
 (7)

Subject to  $h \in I \cap C$  :

$$\min\left\{\int_0^1 \left(h''(t)\right)^2 dt, \ h \in H^2 \cap I \cap C\right\},\$$

where  $H^2 = \big\{ h \in L^2([0,1]) \text{ tel que } h', h'' \in L^2([0,1]) \big\}.$ 

## Constrained cubic spline interpolation

 The cubic spline is the function minimises the linear enegry criterion (LE) (see, e.g., [Wolberg and Alfy, 2002]) :

$$E_L = \int_0^1 \left( h''(t) \right)^2 dt.$$
 (7)

Subject to  $h \in I \cap C$  :

$$\min\left\{\int_0^1 \left(h''(t)\right)^2 dt, \ h \in H^2 \cap I \cap C\right\},\$$

where  $H^2 = \big\{ h \in L^2([0,1]) \text{ tel que } h', h'' \in L^2([0,1]) \big\}.$ 

• This is equivalent to

$$\min_{\substack{h \in H \\ \alpha + \beta x^{(i)} + h(x^{(i)}) = y_i \\ \alpha + \beta x + h(x) \in C}} \int_0^1 (h''(t))^2 dt = \|h\|_H^2.$$

## Monotone cubic spline interpolation [Wolberg and Alfy, 2002]

TABLE: Wolberg's data used to compare different methods

| x    | f(x) |  |  |  |  |
|------|------|--|--|--|--|
| 0.0  | 0.0  |  |  |  |  |
| 1.0  | 1.0  |  |  |  |  |
| 2.0  | 4.8  |  |  |  |  |
| 3.0  | 6.0  |  |  |  |  |
| 4.0  | 8.0  |  |  |  |  |
| 5.0  | 13.0 |  |  |  |  |
| 6.0  | 14.0 |  |  |  |  |
| 7.0  | 15.5 |  |  |  |  |
| 8.0  | 18.0 |  |  |  |  |
| 9.0  | 19.0 |  |  |  |  |
| 10.0 | 23.0 |  |  |  |  |
| 11.0 | 24.1 |  |  |  |  |



FIGURE: Monotone cubic spline interpolation using Wolberg's data : Hyman approach (blue curve) and the proposed approach  $M_{pos}^N(x)$  with N = 1000 (red curve)

## Monotone cubic spline interpolation [Wolberg and Alfy, 2002]



FIGURE: LE using our approach and Wolberg's data

< □ > < 同 >

November 7, 2017, St-Etienne 29 /

#### General introduction of GP regression and motivating example

- 2 Gaussian processes with inequality constraints
  - Finite-dimensional approximation of GPs
  - Simulation of truncated Gaussian vectors

#### 3 Generalization of the Kimeldorf-Wahba correspondence

## Real application in Insurance and Finance : estimation of discount factors and default probabilities

- Discount factors
- Default probabilities 'Credit Default Swaps (CDS)'

#### Noisy observations case

## **Discount factors**

• Discount factor is known to be a non-increasing function with respect to time-to-maturities. It verifies the following linear equality constraints :

$$A \cdot f(\boldsymbol{X}) = \boldsymbol{b}, \qquad f(\boldsymbol{X}) = \left(f(x^{(1)}), \dots, f(x^{(n)})\right)^{\top}, \tag{8}$$

where A is a  $m \times n$  matrix and  $\boldsymbol{b} \in \mathbb{R}^m$ .



#### FIGURE: Cousin and Niang 2014

# Discount factors using Swap vs Euribor 6M market quotes as of 02/06/2010



FIGURE: Simulated paths (gray lines) taken from the conditional GP with non-increasing constraints and market-fit constraints using the Gaussian covariance function with nugget equal to  $10^{-5}$  (left) and the Matérn 5/2 covariance function without nugget (right). Swap vs. Euribor 6M market quotes as of 02/06/2010

# Forward rates using Swap vs Euribor 6M market quotes as 02/06/2010



FIGURE: Forward rates obtained from sample paths of previous figures with Gaussian covariance function (left) and Matérn 5/2 covariance function (right)

## Several quotation dates Swap vs Euribor discount factors



 $\ensuremath{\mathsf{Figure:}}$  Swap-vs.-Euribor discount factors as a function of time-to-maturities and quotation dates

# Default probabilities 'Credit Default Swaps (CDS)' on 06/01/2005



FIGURE: CDS implied survival curves (gray lines) given as simulated paths of a conditional GP with non-increasing constraints using a Gaussian covariance function (left) and a Matérn 5/2 covariance function (right)

## Several quotation dates 'Credit Default Swaps (CDS)'



FIGURE: CDS implied survival probabilities as a function of time-to-maturities and quotation dates

#### General introduction of GP regression and motivating example

- 2 Gaussian processes with inequality constraints
  - Finite-dimensional approximation of GPs
  - Simulation of truncated Gaussian vectors
- 3 Generalization of the Kimeldorf-Wahba correspondence
- Real application in Insurance and Finance : estimation of discount factors and default probabilities
  - Discount factors
  - Default probabilities 'Credit Default Swaps (CDS)'

#### Noisy observations case

THE 1 1

## Noisy observations

• In many application situations, an approximate response is available

$$f(x^{(i)}) = y_i + \epsilon_i = \tilde{y}_i, \quad i = 1, \dots, n,$$

where  $\epsilon \sim \mathcal{N}(\mathbf{0},\sigma_{\rm noise}^2\mathbf{I})$ , with  $\sigma_{\rm noise}^2$  the noise variance and  $\mathbf{I}$  the identity matrix.

• Conditionally to noisy observations  $\tilde{y} = (\tilde{y}_1, \dots, \tilde{y}_n)^\top$ , the process remains a GP

$$Y(\boldsymbol{x}) \mid Y(\boldsymbol{X}) = \tilde{\boldsymbol{y}} \sim \mathcal{GP}\left(\zeta(\boldsymbol{x}), \tau^{2}(\boldsymbol{x})\right),$$

where

$$\begin{split} \zeta(\boldsymbol{x}) &= \eta(\boldsymbol{x}) + \boldsymbol{k}(\boldsymbol{x})^{\top} (\mathbb{K} + \sigma_{\mathsf{noise}}^2 \mathbf{I})^{-1} \left( \tilde{\boldsymbol{y}} - \boldsymbol{\mu} \right); \\ \tau^2(\boldsymbol{x}) &= K(\boldsymbol{x}, \boldsymbol{x}) - \boldsymbol{k}(\boldsymbol{x})^{\top} (\mathbb{K} + \sigma_{\mathsf{noise}}^2 \mathbf{I})^{-1} \boldsymbol{k}(\boldsymbol{x}), \end{split}$$

and  $\boldsymbol{\mu} = \eta(\boldsymbol{X})$  is the vector of trend values at the design of experiments,  $\mathbb{K}_{i,j} = K(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}), \ i, j = 1, \dots, n$  is the covariance matrix of  $Y(\boldsymbol{X})$  and  $\boldsymbol{k}(\boldsymbol{x}) = (K(\boldsymbol{x}, \boldsymbol{x}^{(i)}))_i$  is the vector of covariance between  $Y(\boldsymbol{x})$  and  $Y(\boldsymbol{X})$ .

## Illustrative example - boundedness constraints



FIGURE: The GP approximation with positivity constraints (right) and boundedness constraints (left). The unconstrained mean coincides with the maximum a posteriori in the right figure but not in the left one



FIGURE: The GP approximation with monotonicity constraints for sinusoidal function f(x) = 0.32(x + sin(x)). The unconstrained mean does not coincide with the maximum a posteriori

## Illustrative example - isotonicity in two dimensions



FIGURE: The maximum a posteriori estimate respecting monotonicity (non-decreasing) constraints for the two inputs, and the associated contour levels

## Simulation study

• The real non-decreasing functions proposed by [Holmes and Heard, 2003, Neelon and Dunson, 2004] and used in a comparative study by [Shively et al., 2009, Lin and Dunson, 2014] are considered

**1** flat function 
$$f_1(x) = 3, x \in (0, 10]$$
;

- ${
  m (2)}$  sinusoidal function  $f_2(x)=0.32\{x+sin(x)\},\ x\in(0,10]$ ;
- (a) step function  $f_3(x) = 3$  if  $x \in (0, 8]$  and  $f_3(x) = 8$  if  $x \in (8, 10]$ ;
- linear function  $f_4(x) = 0.3x, x \in (0, 10]$ ;
- exponential function  $f_5(x) = 0.15 \exp(0.6x 3), x \in (0, 10]$ ;
- **o** logistic function  $f_6(x) = 3/\{1 + \exp(-2x + 10)\}, x \in (0, 10].$
- The root-mean-square error (RMSE) of the estimates is computed at the one hundred x values taken uniformly (equidistant) in the interval (0, 10]:

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(f(x_i) - \hat{f}(x_i)\right)^2},$$

where  $\hat{f}(x)$  is the estimate of f(x) and  $x_i$  are the <u>n</u> equally-spaced <u>x</u>-values.

TABLE: Root-mean-square error ( $\times$  100) for data of size n = 100. The results are obtained by repeating the simulation 5000 times

|                   | Flat | Step | Linear       | Exponential | Logistic | Sinusoidal |  |
|-------------------|------|------|--------------|-------------|----------|------------|--|
| GP                | 15.1 | 27.1 | 16.7         | 19.7        | 25.5     | 21.9       |  |
| GP projection     | 11.3 | 25.3 | 16.3         | 19.1        | 22.4     | 21.1       |  |
| Regression spline | 9.7  | 28.5 | 24.0         | 21.3        | 19.4     | 22.9       |  |
| GP approximation  | 8.2  | 41.1 | 1 <b>5.8</b> | 20.8        | 21.0     | 20.6       |  |

- **GP** projection : Lin, L. and Dunson, D. B. (2014). Bayesian monotone regression using Gaussian process projection. *Biometrika*, 101(2) :303–317.
- **Regression spline** : Shively, T. S., Sager, T. W., and Walker, S. G. (2009). A Bayesian approach to non-parametric monotone function estimation. *J. R. Stat. Soc. B*, 71(1) :159–175.
- **GP** approximation : Maatouk, H. and Bay, X. (2017). Gaussian process emulators for computer experiments with inequality constraints. *Math.Geosci.*, 49 :557–582.

(日) (四) (日) (日) (日)



FIGURE: The 95% credible intervals of the GP approximation together with the sinusoidal function, the observations (grey crosses) and the maximum a posteriori estimate

TABLE: Empirical coverage (%) for 95% credible intervals at different x values. The simulations are repeated 1000 times

|                  | 0.5  | 1    | 1.5  | 2    | 2.5  | 3    | 3.5  | 4    | 4.5  | 5    |
|------------------|------|------|------|------|------|------|------|------|------|------|
| GP               | 97.3 | 94.6 | 91.8 | 88.0 | 90.5 | 95.2 | 96.8 | 91.0 | 86.5 | 86.3 |
| GP projection    | 94.1 | 95.4 | 92.0 | 89.5 | 93.1 | 94.6 | 96.0 | 90.0 | 89.0 | 86.9 |
| GP approximation | 97.0 | 93.0 | 89.6 | 90.1 | 94.1 | 97.1 | 95.5 | 89.5 | 85.4 | 86.7 |
|                  |      |      |      |      |      |      |      |      |      |      |

Hassan MAATOUK / Rennes 2

44 / 47

## Simulation study (methodology based on the knowledge of the derivatives of the GP at some input locations)



FIGURE: The root-mean-square error at different sample sizes together with the optimal values obtained in [Riihimäki and Vehtari, 2010]. The results are based on 1000 simulation replicates using the logistic function :  $2/\{1 + \exp(-8x + 4)\}, x \in [0, 1]$ 45 / 47

Hassan MAATOUK / Rennes 2

Gaussian processes with inequality constraints

November 7 2017 St-Etienne

## References



#### Holmes, C. and Heard, N. (2003).

Generalized monotonic regression using random change points. *Stat. Med.*, 22(4) :623–638.



#### Lin, L. and Dunson, D. B. (2014).

Bayesian monotone regression using Gaussian process projection. *Biometrika*, 101(2) :303–317.



#### Maatouk, H. and Bay, X. (2016).

A new rejection sampling method for truncated multivariate Gaussian random variables restricted to convex sets.

In Cools, R. and Nuyens, D., editors, *Monte Carlo and Quasi-Monte Carlo Methods*, pages 521–530. Springer International Publishing, Cham.



#### Neelon, B. and Dunson, D. B. (2004).

Bayesian isotonic regression and trend analysis. *Biometrics*, 60(2) :398–406.



#### Riihimäki, J. and Vehtari, A. (2010).

Gaussian processes with monotonicity information. J. Mach. Learn. Res., 9:645–652.



#### Shively, T. S., Sager, T. W., and Walker, S. G. (2009).

A Bayesian approach to non-parametric monotone function estimation. J. R. Stat. Soc. B, 71(1) :159–175.



#### Wolberg, G. and Alfy, I. (2002).

An energy-minimization framework for monotonic cubic spline interpolation. Journal of Computational and Applied Mathematics,  $143(2):145 \rightarrow 188$ .  $\langle \square \rangle \neq \langle \blacksquare \rangle$ 

#### THANK YOU FOR YOUR ATTENTION.

2

メロト メタト メヨト メヨト