Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Jean-Charles Croix
jean-charles.croix@emse.fr

Génie Mathématique et Industriel (GMI)

First workshop on Gaussian processes at Saint-Etienne - November 2017, 7th.

Contents

(1) Motivation
(2) Karhunen-Loève decomposition in Hilbert spaces

- Gaussian vectors in \mathbb{R}^{n}
- Gaussian elements in Hilbert spaces
(3) Karhunen-Loève decomposition in Banach spaces
(4) Particular case of $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$
(5) Particular case of $C(K), K$ metric and compact.
- Continuous Gaussian processes
- Illustration on Brownian motion
- Summability of λ
(6) Conclusion and open questions
(7) References

Motivation

The problem of representation of Gaussian elements in linear series is used in:
(1) Simulation (e.g. truncated Karhunen-Loève series),
(2) Approximation and Dimension reduction (e.g. PCA or POD),
(Optimal quantization,

- Bayesian inverse problems.

If the existence of an optimal basis is well known in Hilbert spaces...

- ... it's not always explicit (eigenvalue problem),
- ... it's not the case in Banach spaces.

What if we are interested in non-Hilbertian norms ?

In the case of a continuous Gaussian process on $[0,1]$ we may inject it in $L^{2}([0,1], d x)$ and use Hilbertian geometry...

Figure: Karhunen-Loève basis of Brownian motion in $L^{2}([0,1], d x)$.

Motivation

or tackle the problem directly in $C([0,1]) \ldots$

Figure: Brownian motion basis functions in $C([0,1])$ (Paul Levy's construction).
...in the hope of better approximation w.r.t. supremum norm !

Karhunen-Loève decomposition in Hilbert spaces

Gaussian vector in Euclidian spaces

Consider the euclidian space \mathbb{R}^{n} with canonical inner product $\langle.$, . \rangle.

Gaussian random vector

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$ a measurable mapping, then X is a Gaussian vector if and only if $\forall y \in \mathbb{R}^{n}$, $\langle X, y\rangle$ is a Gaussian random variable.

Gaussian vector in Euclidian spaces

Consider the euclidian space \mathbb{R}^{n} with canonical inner product $\langle.$, . \rangle.

Gaussian random vector

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$ a measurable mapping, then X is a Gaussian vector if and only if $\forall y \in \mathbb{R}^{n}$, $\langle X, y\rangle$ is a Gaussian random variable.

Covariance

Given a (centered) Gaussian random vector X, define the bilinear form:

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{n}, \operatorname{Cov}(x, y)=\mathbb{E}[\langle X, x\rangle\langle X, y\rangle], \tag{1}
\end{equation*}
$$

which uniquely defines $\Sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that:

$$
\begin{equation*}
\forall x, y \in \mathbb{R}^{n},\langle\Sigma x, y\rangle=\operatorname{Cov}(x, y) . \tag{2}
\end{equation*}
$$

Cameron-Martin and Gaussian spaces

Considering the Gaussian vector X gives a fundamental structure:

- Gaussian space: $\operatorname{Vect}\left(\left\langle X, e_{k}\right\rangle, k \in[1, n]\right) \subset L^{2}(\mathbb{P})$
- Cameron-Martin space $H_{X}=\operatorname{Range}(\Sigma)$ equipped with $\langle., .\rangle_{x}=\left\langle\Sigma^{-1} .,.\right\rangle$

Loève isometry

The following application:

$$
\begin{equation*}
\langle X, x\rangle \in L^{2}(\mathbb{P}) \rightarrow \Sigma x \in H_{X} \tag{3}
\end{equation*}
$$

is an isometry.

Representation of Gaussian vectors in \mathbb{R}^{n}

- For any orthonormal basis $\left(e_{k}\right)$ in \mathbb{R}^{n}, we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{n}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{4}
\end{equation*}
$$

- For any orthonormal basis $\left(e_{k}\right)$ in \mathbb{R}^{n}, we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{n}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{4}
\end{equation*}
$$

- $\left\langle X(\omega), e_{i}\right\rangle,\left\langle X(\omega), e_{j}\right\rangle$ are independent if and only if $\operatorname{Cov}\left(e_{i}, e_{j}\right)=\left\langle\Sigma e_{i}, e_{j}\right\rangle=\left\langle\Sigma e_{i}, \Sigma e_{j}\right\rangle_{X}=0$.
- For any orthonormal basis $\left(e_{k}\right)$ in \mathbb{R}^{n}, we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{n}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{4}
\end{equation*}
$$

- $\left\langle X(\omega), e_{i}\right\rangle,\left\langle X(\omega), e_{j}\right\rangle$ are independent if and only if $\operatorname{Cov}\left(e_{i}, e_{j}\right)=\left\langle\Sigma e_{i}, e_{j}\right\rangle=\left\langle\Sigma e_{i}, \Sigma e_{j}\right\rangle_{X}=0$.
- For any orthonormal basis $\left(x_{k}\right)$ in H_{X} :

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\operatorname{dim}\left(H_{x}\right)}\left\langle X(\omega), x_{k}\right\rangle_{X x_{k}} \tag{5}
\end{equation*}
$$

- For any orthonormal basis $\left(e_{k}\right)$ in \mathbb{R}^{n}, we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{n}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{4}
\end{equation*}
$$

- $\left\langle X(\omega), e_{i}\right\rangle,\left\langle X(\omega), e_{j}\right\rangle$ are independent if and only if $\operatorname{Cov}\left(e_{i}, e_{j}\right)=\left\langle\Sigma e_{i}, e_{j}\right\rangle=\left\langle\Sigma e_{i}, \Sigma e_{j}\right\rangle_{X}=0$.
- For any orthonormal basis $\left(x_{k}\right)$ in H_{x} :

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\operatorname{dim}(H x)}\left\langle X(\omega), x_{k}\right\rangle_{x x_{k}} \tag{5}
\end{equation*}
$$

- The Spectral theorem (on covariance operator) exhibits a particular (Karhunen-Loève) basis (bi-orthogonal and $\Sigma h_{k}=\lambda_{k} h_{k}$):

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\operatorname{dim}\left(H_{x}\right)} \sqrt{\lambda_{k}}\left\langle X(\omega), h_{k}\right\rangle h_{k} \tag{6}
\end{equation*}
$$

- For any orthonormal basis $\left(e_{k}\right)$ in \mathbb{R}^{n}, we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{n}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{4}
\end{equation*}
$$

- $\left\langle X(\omega), e_{i}\right\rangle,\left\langle X(\omega), e_{j}\right\rangle$ are independent if and only if
$\operatorname{Cov}\left(e_{i}, e_{j}\right)=\left\langle\Sigma e_{i}, e_{j}\right\rangle=\left\langle\Sigma e_{i}, \Sigma e_{j}\right\rangle_{X}=0$.
- For any orthonormal basis $\left(x_{k}\right)$ in H_{X} :

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\operatorname{dim}\left(H_{x}\right)}\left\langle X(\omega), x_{k}\right\rangle x x_{k} \tag{5}
\end{equation*}
$$

- The Spectral theorem (on covariance operator) exhibits a particular (Karhunen-Loève) basis (bi-orthogonal and $\Sigma h_{k}=\lambda_{k} h_{k}$):

$$
\begin{equation*}
X(\omega)=\sum_{k=1}^{\operatorname{dim}\left(H_{X}\right)} \sqrt{\lambda_{k}}\left\langle X(\omega), h_{k}\right\rangle h_{k} \tag{6}
\end{equation*}
$$

Note P^{k} the linear projector on the k-th biggest eigenvalues, then: $\forall k \leq n, \min _{\operatorname{rank}(P)=k} \mathbb{E}\left[\|X-P X\|^{2}\right]=\mathbb{E}\left[\left\|X-P^{k} X\right\|^{2}\right]=\lambda_{k+1}+\ldots+\lambda_{\operatorname{dim}\left(H_{X}\right)}$

Representation of Gaussian vectors in \mathbb{R}^{n}

Figure: Karhunen-Loève basis in dimension 2.

Gaussian element in Hilbert spaces

Consider the (real) Hilbert space H with inner product $\langle.,$.$\rangle .$

Gaussian random element

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(H, \mathcal{B}(H))$ a measurable mapping, then X is a Gaussian element if and only if $\forall y \in H$, $\langle X, y\rangle$ is a Gaussian random variable.

Covariance

Given a Gaussian random element X, define the bilinear form:

$$
\begin{equation*}
\forall x, y \in H, \operatorname{Cov}(x, y)=\mathbb{E}[\langle X, x\rangle\langle X, y\rangle], \tag{8}
\end{equation*}
$$

and the associated covariance operator $\mathcal{C}: H \rightarrow H$ such that:

$$
\begin{equation*}
\forall x, y \in H,\langle\mathcal{C} x, y\rangle=\operatorname{Cov}(x, y) \tag{9}
\end{equation*}
$$

Representation of Gaussian elements in Hilbert spaces

- The covariance operator $\mathcal{C}: H \rightarrow H$ is positive, symmetric and trace-class (see Vakhania 1987).

Representation of Gaussian elements in Hilbert spaces

- The covariance operator $\mathcal{C}: H \rightarrow H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_{X} is the completion of Range (\mathcal{C}) w.r.t. $\langle x, y\rangle_{\mathcal{C}}=\left\langle\mathcal{C}^{-1} x, y\right\rangle$ (it's a proper subspace of $H, H_{X} \hookrightarrow H$, see Vakhania 1987).

Representation of Gaussian elements in Hilbert spaces

- The covariance operator $\mathcal{C}: H \rightarrow H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_{X} is the completion of $\operatorname{Range}(\mathcal{C})$ w.r.t. $\langle x, y\rangle_{\mathcal{C}}=\left\langle\mathcal{C}^{-1} x, y\right\rangle$ (it's a proper subspace of $H, H_{X} \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis $\left(e_{k}\right)$ in H we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k \geq 0}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{10}
\end{equation*}
$$

Representation of Gaussian elements in Hilbert spaces

- The covariance operator $\mathcal{C}: H \rightarrow H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_{X} is the completion of Range (\mathcal{C}) w.r.t. $\langle x, y\rangle_{\mathcal{C}}=\left\langle\mathcal{C}^{-1} x, y\right\rangle$ (it's a proper subspace of $H, H_{X} \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis $\left(e_{k}\right)$ in H we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k \geq 0}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{10}
\end{equation*}
$$

- For any basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$:

$$
\begin{equation*}
X(\omega) \stackrel{d}{=} \sum_{k \geq 0} \xi_{k}(\omega) x_{k} \tag{11}
\end{equation*}
$$

Representation of Gaussian elements in Hilbert spaces

- The covariance operator $\mathcal{C}: H \rightarrow H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_{X} is the completion of Range (\mathcal{C}) w.r.t. $\langle x, y\rangle_{\mathcal{C}}=\left\langle\mathcal{C}^{-1} x, y\right\rangle$ (it's a proper subspace of $H, H_{X} \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis $\left(e_{k}\right)$ in H we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k \geq 0}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{10}
\end{equation*}
$$

- For any basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$:

$$
\begin{equation*}
X(\omega) \stackrel{d}{=} \sum_{k \geq 0} \xi_{k}(\omega) x_{k} \tag{11}
\end{equation*}
$$

- Spectral theorem applies and exhibits a (Karhunen-Loève) bi-orthogonal basis $\left(h_{k}\right): X(\omega)=\sum_{k \geq 0} \sqrt{\lambda_{k}} \xi_{k}(\omega) h_{k}$ a.s.

Representation of Gaussian elements in Hilbert spaces

- The covariance operator $\mathcal{C}: H \rightarrow H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_{X} is the completion of Range (\mathcal{C}) w.r.t. $\langle x, y\rangle_{\mathcal{C}}=\left\langle\mathcal{C}^{-1} x, y\right\rangle$ (it's a proper subspace of $H, H_{X} \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis $\left(e_{k}\right)$ in H we can write:

$$
\begin{equation*}
X(\omega)=\sum_{k \geq 0}\left\langle X(\omega), e_{k}\right\rangle e_{k} \text { a.s. } \tag{10}
\end{equation*}
$$

- For any basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$:

$$
\begin{equation*}
X(\omega) \stackrel{d}{=} \sum_{k \geq 0} \xi_{k}(\omega) x_{k} \tag{11}
\end{equation*}
$$

- Spectral theorem applies and exhibits a (Karhunen-Loève) bi-orthogonal basis $\left(h_{k}\right): X(\omega)=\sum_{k \geq 0} \sqrt{\lambda_{k}} \xi_{k}(\omega) h_{k}$ a.s.
- Eckart-Young theorem is still valid (functional PCA, ...)

$$
\begin{equation*}
\forall k>0, \min _{\operatorname{rank}(P)=k} \mathbb{E}\left[\|X-P X\|_{H}^{2}\right]=\mathbb{E}\left[\left\|X-P^{k} X\right\|_{H}^{2}\right]=\sum_{i>k} \lambda_{i} \tag{12}
\end{equation*}
$$

Karhunen-Loève decomposition in Banach spaces

Gaussian element in Banach spaces

Consider the (real) Banach space E with duality pairing $\langle., .\rangle_{E, E^{*}}$.

Gaussian random element

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X:(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow(E, \mathcal{B}(E))$ a measurable mapping, then X is a Gaussian element if and only if $\forall f \in E^{*},\langle X, f\rangle_{E, E^{*}}$ is a Gaussian random variable.

Covariance

Given a Gaussian random element X, define the bilinear form:

$$
\begin{equation*}
\forall f, g \in E^{*}, \operatorname{Cov}(f, g)=\mathbb{E}\left[\langle X, f\rangle_{E, E^{*}}\langle X, g\rangle_{E, E^{*}}\right] \tag{13}
\end{equation*}
$$

and the associated covariance operator $\mathcal{C}: E^{*} \rightarrow E$ (see Vakhania 1987 or Bogachev 1998) such that:

$$
\begin{equation*}
\forall f, g \in E^{*},\langle\mathcal{C} f, g\rangle_{E, E^{*}}=\operatorname{Cov}(f, g) \tag{14}
\end{equation*}
$$

Representation of Gaussian elements in Banach spaces

- The covariance operator $\mathcal{C}: E^{*} \rightarrow E$ is positive, symmetric and nuclear (see Vakhania 1987).
- The covariance operator $\mathcal{C}: E^{*} \rightarrow E$ is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_{X} is the completion of $\operatorname{Range}(\mathcal{C})$ w.r.t. $\langle x, y\rangle_{X}=\left\langle y, \mathcal{C}^{-1} x\right\rangle_{E, E^{*}}$ (it's a proper subspace of $E, H_{X} \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).

Representation of Gaussian elements in Banach spaces

- The covariance operator $\mathcal{C}: E^{*} \rightarrow E$ is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_{X} is the completion of $\operatorname{Range}(\mathcal{C})$ w.r.t. $\langle x, y\rangle_{X}=\left\langle y, \mathcal{C}^{-1} x\right\rangle_{E, E^{*}}$ (it's a proper subspace of $E, H_{X} \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$, we have:

$$
\begin{equation*}
X \stackrel{d}{=} \sum_{k \geq 1} \xi_{k} x_{k} \tag{15}
\end{equation*}
$$

Representation of Gaussian elements in Banach spaces

- The covariance operator $\mathcal{C}: E^{*} \rightarrow E$ is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_{X} is the completion of $\operatorname{Range}(\mathcal{C})$ w.r.t. $\langle x, y\rangle_{X}=\left\langle y, \mathcal{C}^{-1} x\right\rangle_{E, E^{*}}$ (it's a proper subspace of $E, H_{X} \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$, we have:

$$
\begin{equation*}
X \stackrel{d}{=} \sum_{k \geq 1} \xi_{k} x_{k} \tag{15}
\end{equation*}
$$

- $\mathcal{C}: E^{*} \rightarrow E \Rightarrow$ No Spectral theorem.

Representation of Gaussian elements in Banach spaces

- The covariance operator $\mathcal{C}: E^{*} \rightarrow E$ is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_{X} is the completion of $\operatorname{Range}(\mathcal{C})$ w.r.t. $\langle x, y\rangle_{X}=\left\langle y, \mathcal{C}^{-1} x\right\rangle_{E, E^{*}}$ (it's a proper subspace of $E, H_{X} \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$, we have:

$$
\begin{equation*}
X \stackrel{d}{=} \sum_{k \geq 1} \xi_{k} x_{k} \tag{15}
\end{equation*}
$$

- $\mathcal{C}: E^{*} \rightarrow E \Rightarrow$ No Spectral theorem.
- We know that (Bogachev 1998, Vakahnia 1991):
- $\exists\left(x_{k}\right) \in$ Range (\mathcal{C}) Hilbert basis in H_{X},
- $\exists\left(x_{k}\right) \in H_{X}$ such that $\sum_{k \geq 0}\left\|h_{k}\right\|_{E}^{2}<+\infty$,

Representation of Gaussian elements in Banach spaces

- The covariance operator $\mathcal{C}: E^{*} \rightarrow E$ is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_{X} is the completion of $\operatorname{Range}(\mathcal{C})$ w.r.t. $\langle x, y\rangle_{X}=\left\langle y, \mathcal{C}^{-1} x\right\rangle_{E, E^{*}}$ (it's a proper subspace of $E, H_{X} \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis $\left(x_{k}\right)$ in H_{X} and $\left(\xi_{k}\right)$ i.i.d. $\mathcal{N}(0,1)$, we have:

$$
\begin{equation*}
X \stackrel{d}{=} \sum_{k \geq 1} \xi_{k} x_{k} \tag{15}
\end{equation*}
$$

- $\mathcal{C}: E^{*} \rightarrow E \Rightarrow$ No Spectral theorem.
- We know that (Bogachev 1998, Vakahnia 1991):
- $\exists\left(x_{k}\right) \in \operatorname{Range}(\mathcal{C})$ Hilbert basis in H_{X},
- $\exists\left(x_{k}\right) \in H_{X}$ such that $\sum_{k \geq 0}\left\|h_{k}\right\|_{E}^{2}<+\infty$,
- If the basis $\left(x_{k}\right)$ is in Range (\mathcal{C}) with $x_{k}=\mathcal{C} x_{k}^{*}$, then:

$$
\begin{equation*}
X(\omega)=\sum_{k \geq 0}\left\langle X(\omega), x_{k}^{*}\right\rangle_{E, E^{*}} x_{k} \tag{16}
\end{equation*}
$$

Representation of Gaussian elements in Banach spaces

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).
Let \mathcal{C} be the covariance operator of a Gaussian element, then:

$$
\begin{equation*}
\mathcal{C}=S S^{*} \tag{17}
\end{equation*}
$$

where $S: H \rightarrow E$ is a bounded operator and H a Hilbert space.

Representation of Gaussian elements in Banach spaces

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).
Let \mathcal{C} be the covariance operator of a Gaussian element, then:

$$
\begin{equation*}
\mathcal{C}=S S^{*}, \tag{17}
\end{equation*}
$$

where $S: H \rightarrow E$ is a bounded operator and H a Hilbert space.
Examples:

- In the Hilbert case, $S=\mathcal{C}^{\frac{1}{2}}$,
- $S: H_{X} \rightarrow E$ the inclusion map,
- $S: f \in \overline{E^{*}}{ }^{2}(\mathbb{P}) \rightarrow \mathbb{E}[f(X) X] \in E\left(S^{*}\right.$ is the injection from E^{*} to $\left.L^{2}\right)$

Representation of Gaussian elements in Banach spaces

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).

Let \mathcal{C} be the covariance operator of a Gaussian element, then:

$$
\begin{equation*}
\mathcal{C}=S S^{*} \tag{17}
\end{equation*}
$$

where $S: H \rightarrow E$ is a bounded operator and H a Hilbert space.
Examples:

- In the Hilbert case, $S=\mathcal{C}^{\frac{1}{2}}$,
- $S: H_{X} \rightarrow E$ the inclusion map,
- $S: f \in \overline{E^{*}}{ }^{2}(\mathbb{P}) \rightarrow \mathbb{E}[f(X) X] \in E\left(S^{*}\right.$ is the injection from E^{*} to $\left.L^{2}\right)$

(Luschgy and Pagès 2009)

Let $\mathcal{C}=S S^{*}$ with $S: H \rightarrow E$. Then for any basis $\left(h_{n}\right)$ in H :

$$
\begin{equation*}
X \stackrel{d}{=} \sum_{k \geq 0} \xi_{k} S h_{k}, \tag{18}
\end{equation*}
$$

where $\left(\xi_{k}\right)$ are i.i.d. $\mathcal{N}(0,1)$.

Representation of Gaussian elements in Banach spaces

This methodology has been widely used:

- When $E=\mathcal{C}([0,1]), S^{*}: f \in E^{*} \rightarrow L^{2}([0,1], d x) \ldots$

We will now give a different methodology, mimicking the Hilbert case, to construct a Hilbert basis in H_{X}. We will proceed as follows:
(1) Find "directions" of maximum variance,
(2) Choose a right notion of orthogonality to iterate,
(3) Study the asymptotics.

Decomposition of the Cameron-Martin space

(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$
- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(2) $\exists f_{0} \in \mathcal{B}_{E^{*}}(0,1)$ (non-unique) such that
$\operatorname{Cov}\left(f_{0}, f_{0}\right)=\max _{\|f\|_{E^{*}} \leq 1} \operatorname{Cov}(f, f)=\lambda_{0}($ Banach-Alaoglu),
(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$
- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(2) $\exists f_{0} \in \mathcal{B}_{E^{*}}(0,1)$ (non-unique) such that
$\operatorname{Cov}\left(f_{0}, f_{0}\right)=\max _{\|f\|_{E^{*}} \leq 1} \operatorname{Cov}(f, f)=\lambda_{0}($ Banach-Alaoglu),
(3) If $\lambda_{0}>0$, let $x_{0} \in E$ such that $\mathcal{C} f_{0}=\lambda_{0} x_{0}$, then
$P_{0}: x \in E \rightarrow\left\langle x, f_{0}\right\rangle_{E, E^{*} x_{0}}$ is a projector of unit norm.
(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$
- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(2) $\exists f_{0} \in \mathcal{B}_{E^{*}}(0,1)$ (non-unique) such that
$\operatorname{Cov}\left(f_{0}, f_{0}\right)=\max _{\|f\|_{E^{*}} \leq 1} \operatorname{Cov}(f, f)=\lambda_{0}($ Banach-Alaoglu),
(3) If $\lambda_{0}>0$, let $x_{0} \in E$ such that $\mathcal{C} f_{0}=\lambda_{0} x_{0}$, then
$P_{0}: x \in E \rightarrow\left\langle x, f_{0}\right\rangle_{E, E^{*} x_{0}}$ is a projector of unit norm.
(-) $X=\left(P_{0} X,\left(\mathcal{I}-P_{0}\right) X\right)$.
(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$
- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(2) $\exists f_{0} \in \mathcal{B}_{E^{*}}(0,1)$ (non-unique) such that
$\operatorname{Cov}\left(f_{0}, f_{0}\right)=\max _{\|f\|_{E^{*}} \leq 1} \operatorname{Cov}(f, f)=\lambda_{0}($ Banach-Alaoglu),
(3) If $\lambda_{0}>0$, let $x_{0} \in E$ such that $\mathcal{C} f_{0}=\lambda_{0} x_{0}$, then
$P_{0}: x \in E \rightarrow\left\langle x, f_{0}\right\rangle_{E, E^{*} x_{0}}$ is a projector of unit norm.
(-) $X=\left(P_{0} X,\left(\mathcal{I}-P_{0}\right) X\right)$.
(0) Iterate on $X_{1}=\left(\mathcal{I}-P_{0}\right) X$.

Decomposition of the Cameron-Martin space

(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(2) $\exists f_{0} \in \mathcal{B}_{E^{*}}(0,1)$ (non-unique) such that
$\operatorname{Cov}\left(f_{0}, f_{0}\right)=\max _{\|f\|_{E^{*}} \leq 1} \operatorname{Cov}(f, f)=\lambda_{0}($ Banach-Alaoglu),
(3) If $\lambda_{0}>0$, let $x_{0} \in E$ such that $\mathcal{C} f_{0}=\lambda_{0} x_{0}$, then
$P_{0}: x \in E \rightarrow\left\langle x, f_{0}\right\rangle_{E, E^{*}} x_{0}$ is a projector of unit norm.
(9) $X=\left(P_{0} X,\left(\mathcal{I}-P_{0}\right) X\right)$.
(0) Iterate on $X_{1}=\left(\mathcal{I}-P_{0}\right) X$.

Bay \& Croix 2017

$\left(\lambda_{n}\right)$ is non-increasing, $\lambda_{n} \rightarrow 0$ and $\left(\sqrt{\lambda_{k}} x_{k}\right)$ is a Hilbert basis in H_{X}.

Decomposition of the Cameron-Martin space

(1) For any (Gaussian) covariance operator, $f \in E^{*} \rightarrow \operatorname{Cov}(f, f) \in \mathbb{R}^{+}$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
(2) $\exists f_{0} \in \mathcal{B}_{E^{*}}(0,1)$ (non-unique) such that
$\operatorname{Cov}\left(f_{0}, f_{0}\right)=\max _{\|f\|_{E^{*}} \leq 1} \operatorname{Cov}(f, f)=\lambda_{0}($ Banach-Alaoglu),
(3) If $\lambda_{0}>0$, let $x_{0} \in E$ such that $\mathcal{C} f_{0}=\lambda_{0} x_{0}$, then
$P_{0}: x \in E \rightarrow\left\langle x, f_{0}\right\rangle_{E, E^{*}} x_{0}$ is a projector of unit norm.
- $X=\left(P_{0} X,\left(\mathcal{I}-P_{0}\right) X\right)$.
(0) Iterate on $X_{1}=\left(\mathcal{I}-P_{0}\right) X$.

Bay \& Croix 2017

$\left(\lambda_{n}\right)$ is non-increasing, $\lambda_{n} \rightarrow 0$ and $\left(\sqrt{\lambda_{k}} x_{k}\right)$ is a Hilbert basis in H_{X}.
We will note $x_{0}^{*}=f_{0}$ and $x_{n}^{*}=f_{n}-\sum_{k=0}^{n-1}\left\langle x_{k}, f_{n}\right\rangle_{E, E} x_{k}^{*}$ such that $P_{n}=\sum_{k=0}^{n} x_{k}^{*} \otimes x_{k}$ (similar to Gram-Schmidt).

Properties of the decomposition

Few comments about the previous construction...

Properties

This construction gives the following properties:

- $X(\omega)=\sum_{k \geq 0}\left\langle X(\omega), x_{k}^{*}\right\rangle_{E, E^{*}} X_{k}$ a.s.
- $\mathcal{C}=S S^{*}$ with $S^{*}: f \in E^{*} \rightarrow \sum_{k \geq 0} \lambda_{k}\left\langle x_{k}, f\right\rangle_{E, E^{*}} x_{k}$
- Note $\mathcal{C}^{n}=\sum_{k=0}^{n} \lambda_{k} x_{k} \otimes x_{k}$ then $\left\|\mathcal{C}-\mathcal{C}^{n}\right\|_{\mathcal{L}\left(E^{*}, E\right)}=\lambda_{n+1}$.
- Recovers Karhunen-Loève basis in the Hilbert case.
- $\left(x_{k}, x_{k}^{*}\right) \subset E \times E^{*}$ is bi-orthogonal.
- ${\overline{\operatorname{Vect}}\left(x_{k}, k \geq 0\right)}^{E}={\overline{H_{X}}}^{E}$,
- $\forall k \in \mathbb{N},\left\|f_{k}\right\|_{E^{*}}=\left\|x_{k}\right\|_{E}=1$.

Remarks

- $\sum_{k \geq 0} \lambda_{k}$ need not be finite (not a nuclear representation of \mathcal{C}).
- Optimality seems out of reach (Rate optimality ?).

Particular case of $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$

Here, $E^{*}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right)$ and $\forall(x, f) \in E \times E^{*},\langle x, f\rangle_{E, E^{*}}=\sum_{i=1}^{n} x_{i} f_{i}$.

- Suppose a centered dataset $\left(y_{i}\right)_{i \in[1, p]} \in\left(\mathbb{R}^{n}\right)^{p}$,
- Form the usual covariance matrix $\Sigma \in \mathcal{M}_{n}(\mathbb{R})$,
- Find the direction of maximal variance $f_{0} \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\lambda_{0}=f_{0}^{T} \Sigma f_{0}=\max _{i \in[1, n]} \Sigma_{(i, i)} \text { with } f_{0}=(0, \ldots, 0,1,0, \ldots, 0) \tag{19}
\end{equation*}
$$

- If $\lambda_{0}>0$ then $x_{0}=\frac{\Sigma f_{0}}{\lambda_{0}}$.
- $\Sigma_{1}=\Sigma-\lambda_{0} x_{0} x_{0}^{T}$
- Iterate.

Application in \mathbb{R}^{n}

- Residuals norm as $r_{k}=\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\sum_{j=0}^{k}\left\langle x_{i}, x_{j}^{*}\right\rangle_{E, E^{*}} x_{j}\right\|_{\infty}$,
- Projections norm as $p_{k}=\frac{1}{n} \sum_{i=1}^{n}\left\|\sum_{j=0}^{k}\left\langle x_{i}, x_{j}^{*}\right\rangle_{E, E^{*}} x_{j}\right\|_{\infty}$.

Figure: Residuals (decreasing) and projections (increasing) norm (blue for L2-PCA, red for Banach PCA)

Particular case of $C(K), K$ metric and compact.

Let X be a Gaussian element such that $X \in C(K)$ almost-surely and suppose that

$$
\begin{equation*}
k:(s, t) \in K^{2} \rightarrow\left\langle\mathcal{C} \delta_{s}, \delta_{t}\right\rangle_{E, E^{*}}=\operatorname{Cov}\left(X_{s}, X_{t}\right) \in \mathbb{R} \tag{20}
\end{equation*}
$$

is continuous. The Cameron-Martin space H_{X} coincides here with the Reproducing Kernel Hilbert space (RKHS). The previous decomposition becomes:
(1) Set $n=0$ and $k_{n}=k$,
(2) Find $x_{n} \in K$ such that $k_{n}\left(x_{n}, x_{n}\right)=\max _{x \in K} k_{n}(x, x)$,
(3) If $\lambda_{n}=k_{n}\left(x_{n}, x_{n}\right)>0$ then $k_{n+1}(s, t)=k_{n}(s, t)-\frac{k_{n}\left(s, x_{n}\right) k_{n}\left(x_{n}, t\right)}{\lambda_{n}}$,
(-) $n \leftarrow n+1$.

Illustration on Brownian motion: Step 1

Figure: Left: Brownian motion samples and point-wise (symmetrized) variance. Right: First basis function $x_{0}(t)=t$ associated to $f_{0}=\delta_{1}$.

Illustration on Brownian motion: Step 2

Figure: Left: Brownian bridge samples and point-wise (symmetrized) variance. Right: Second basis function $x_{1}(t)=\min (t, 0.5)-0.5 t$, associated to $f_{1}=\delta_{\frac{1}{2}}$.

Illustration on Brownian motion: Step 3

Figure: Left: Conditional Brownian motion samples and point-wise (symmetrized) variance. Right: Third and fourth basis functions.

A word on summability

The proposed decomposition need not be a nuclear representation of \mathcal{C}, that is $\sum_{k \geq 0} \lambda_{k} \in[0,+\infty]$. Indeed, the Brownian case shows us:

$$
\begin{equation*}
\sum_{k \geq 0} \lambda_{k}=1+\frac{1}{2}+2 * \frac{1}{4}+4 * \frac{1}{16}+8 * \frac{1}{32}+\ldots=+\infty \tag{21}
\end{equation*}
$$

However, a simple transformation gives a nuclear representation in this case:

$$
\begin{align*}
& \tilde{f}_{2}^{1}=\frac{f_{2}^{1}-f_{2}^{2}}{2} \Rightarrow \operatorname{Cov}\left(\tilde{f}_{2}^{1}, \tilde{f}_{2}^{1}\right)=\frac{\operatorname{Cov}\left(f_{2}^{1}, f_{2}^{1}\right)}{2}=\frac{1}{8} \tag{22}\\
& \tilde{f}_{2}^{2}=\frac{f_{2}^{1}+f_{2}^{2}}{2} \Rightarrow \operatorname{Cov}\left(\tilde{f}_{2}^{2}, \tilde{f}_{2}^{2}\right)=\frac{\operatorname{Cov}\left(f_{2}^{2}, f_{2}^{2}\right)}{2}=\frac{1}{8} \tag{23}
\end{align*}
$$

Doing similar transformations at each step gives:

$$
\begin{equation*}
\sum_{k \geq 0} \lambda_{k}=1+\frac{1}{2}+2 * \frac{1}{8}+4 * \frac{1}{64}+8 * \frac{1}{256}+\ldots=2 \tag{24}
\end{equation*}
$$

Remark that $\mathbb{E}\left[\left\|\sum_{k \geq n} \xi_{k} h_{k}\right\|^{2}\right] \leq \sum_{k \geq n} \lambda_{k}$, thus the approximation error is exponentially decreasing!

Conclusion and open questions

Conclusion and open questions

Conclusions

- New "practical" method to represent Gaussian elements, based on covariance operator.
- Numerical solution in the case of $E=C(K)(K$ metric and compact).
- Rediscovers Paul Levy's construction of Brownian motion.

Open question \& future work

- Other properties of $\left(x_{k}, x_{k}^{*}\right) \in E \times E^{*}$?
- Rate optimality of finite dimensional approximations in $C(K)$?
- Multiplicity of decomposition elements ?
- Links with approximation numbers (ex: $I(X)=\mathbb{E}\left[\|X\|^{2}\right]^{\frac{1}{2}}$) approximation theory (s-numbers) ? Properties of Banach spaces ?
- Optimality for projection norm ? Dual problem ?
- Interpretation of $\sum_{k \geq 0} \lambda_{k}$ when it is finite ?
- Evolution of $\left\|x_{k}^{*}\right\|_{E^{*}}$?

References

國 X．Bay，J．－C．Croix．
Karhunen－Loève decomposition of Gaussian measures on Banach spaces．
ArXiV， 2017.
圊 H．Luschgy，G．Pagès．
Expansions For Gaussian Processes And Parseval Frames．
Electronic Journal of Probability，14，2009，1198－1221．
围
N．Vakhania．
Canonical Factorization of Gaussian covariance operators and some of its applications．
Theory of Probability and Its Applications， 1991.
Q V．Bogachev．
Gaussian Measures．
Mathematical Surveys and Monographs vol．62，AMS， 1998.
Q N．Vakhania，V．Tarieladze，S．Chobanyan．
Probability Distributions on Banach spaces．
Mathematics and Its Applications，Springer Netherlands， 1987.

Appendix

Examples with different kernels

Figure: Wiener measure basis functions.

Examples with different kernels

Figure: Wiener measure basis variances.

Examples with different kernels

Figure: $k(s, t)=\exp \left(-\frac{(s-t)^{2}}{2}\right)$ basis functions.

Examples with different kernels

Figure: $k(s, t)=\exp \left(-\frac{(s-t)^{2}}{2}\right)$ basis variances.

Examples with different kernels

Figure: Matern 3/2 kernel basis functions.

Examples with different kernels

Figure: Matern 3/2 kernel basis variances.

Examples with different kernels

Figure: Fractional brownian motion ($H=75 \%$) basis functions.

Examples with different kernels

Figure: Fractional brownian motion ($H=25 \%$) basis functions.

