Karhunen-Loève decomposition of Gaussian measures on Banach spaces

Jean-Charles Croix jean-charles.croix@emse.fr

Génie Mathématique et Industriel (GMI)

First workshop on Gaussian processes at Saint-Etienne - November 2017, 7th.

<ロ> <同> <同> < 目> < 目> < 目 > の

Contents

Motivation

2 Karhunen-Loève decomposition in Hilbert spaces

- Gaussian vectors in \mathbb{R}^n
- Gaussian elements in Hilbert spaces
- 3 Karhunen-Loève decomposition in Banach spaces
- 4 Particular case of $(\mathbb{R}^n, \|.\|_{\infty})$
- **5** Particular case of C(K), K metric and compact.
 - Continuous Gaussian processes
 - Illustration on Brownian motion
 - Summability of λ
- 6 Conclusion and open questions

* ロ > * 個 > * 제 > * 제 > 제 = >

Motivation

The problem of representation of Gaussian elements in linear series is used in:

- Simulation (e.g. truncated Karhunen-Loève series),
- Approximation and Dimension reduction (e.g. PCA or POD),
- Optimal quantization,
- Bayesian inverse problems.

If the existence of an optimal basis is well known in Hilbert spaces...

- ... it's not always explicit (eigenvalue problem),
- ... it's not the case in Banach spaces.

What if we are interested in non-Hilbertian norms ?

Motivation

In the case of a continuous Gaussian process on [0,1] we may inject it in $L^2([0,1], dx)$ and use Hilbertian geometry...

Figure: Karhunen-Loève basis of Brownian motion in $L^2([0,1], dx)$.

Motivation

or tackle the problem directly in C([0,1])...

Figure: Brownian motion basis functions in C([0, 1]) (Paul Levy's construction). ...in the hope of better approximation w.r.t. supremum norm $\frac{1}{2}$, $z \in \mathbb{R}$ and $z \in \mathbb{R}$

Karhunen-Loève decomposition in Hilbert spaces

7/42

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆○

Gaussian vector in Euclidian spaces

Consider the euclidian space \mathbb{R}^n with canonical inner product $\langle ., . \rangle$.

Gaussian random vector

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ a measurable mapping, then X is a Gaussian vector if and only if $\forall y \in \mathbb{R}^n$, $\langle X, y \rangle$ is a Gaussian random variable.

Gaussian vector in Euclidian spaces

Consider the euclidian space \mathbb{R}^n with canonical inner product $\langle ., . \rangle$.

Gaussian random vector

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ a measurable mapping, then X is a Gaussian vector if and only if $\forall y \in \mathbb{R}^n$, $\langle X, y \rangle$ is a Gaussian random variable.

Covariance

Given a (centered) Gaussian random vector X, define the bilinear form:

$$\forall x, y \in \mathbb{R}^n, \ Cov(x, y) = \mathbb{E}[\langle X, x \rangle \langle X, y \rangle], \tag{1}$$

which uniquely defines $\Sigma : \mathbb{R}^n \to \mathbb{R}^n$ such that:

$$\forall x, y \in \mathbb{R}^n, \langle \Sigma x, y \rangle = Cov(x, y).$$
 (2)

イロト イロト イヨト イヨト 油

Cameron-Martin and Gaussian spaces

Considering the Gaussian vector X gives a fundamental structure:

- Gaussian space: $Vect(\langle X, e_k \rangle, \ k \in [1, n]) \subset L^2(\mathbb{P})$
- Cameron-Martin space $H_X = Range(\Sigma)$ equipped with $\langle ., . \rangle_X = \langle \Sigma^{-1} ., . \rangle$

Loève isometry

The following application:

$$\langle X, x \rangle \in L^2(\mathbb{P}) \to \Sigma x \in H_X$$

(3)

is an isometry.

9/42

• For any orthonormal basis (e_k) in \mathbb{R}^n , we can write:

$$X(\omega) = \sum_{k=1}^{n} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(4)

• For any orthonormal basis (e_k) in \mathbb{R}^n , we can write:

$$X(\omega) = \sum_{k=1}^{n} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(4)

• $\langle X(\omega), e_i \rangle$, $\langle X(\omega), e_j \rangle$ are independent if and only if $Cov(e_i, e_j) = \langle \Sigma e_i, e_j \rangle = \langle \Sigma e_i, \Sigma e_j \rangle_X = 0.$

• For any orthonormal basis (e_k) in \mathbb{R}^n , we can write:

$$X(\omega) = \sum_{k=1}^{n} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(4)

- $\langle X(\omega), e_i \rangle$, $\langle X(\omega), e_j \rangle$ are independent if and only if $Cov(e_i, e_j) = \langle \Sigma e_i, e_j \rangle = \langle \Sigma e_i, \Sigma e_j \rangle_X = 0.$
- For any orthonormal basis (x_k) in H_X :

$$X(\omega) = \sum_{k=1}^{\dim(H_X)} \langle X(\omega), x_k \rangle_X x_k$$
(5)

• For any orthonormal basis (e_k) in \mathbb{R}^n , we can write:

$$X(\omega) = \sum_{k=1}^{n} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(4)

- $\langle X(\omega), e_i \rangle$, $\langle X(\omega), e_j \rangle$ are independent if and only if $Cov(e_i, e_j) = \langle \Sigma e_i, e_j \rangle = \langle \Sigma e_i, \Sigma e_j \rangle_X = 0.$
- For any orthonormal basis (x_k) in H_X :

$$X(\omega) = \sum_{k=1}^{\dim(H_X)} \langle X(\omega), x_k \rangle_X x_k$$
(5)

 The Spectral theorem (on covariance operator) exhibits a particular (Karhunen-Loève) basis (bi-orthogonal and Σh_k = λ_kh_k):

$$X(\omega) = \sum_{k=1}^{\dim(H_X)} \sqrt{\lambda_k} \langle X(\omega), h_k \rangle h_k$$
(6)

• For any orthonormal basis (e_k) in \mathbb{R}^n , we can write:

$$X(\omega) = \sum_{k=1}^{n} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(4)

- $\langle X(\omega), e_i \rangle$, $\langle X(\omega), e_j \rangle$ are independent if and only if $Cov(e_i, e_j) = \langle \Sigma e_i, e_j \rangle = \langle \Sigma e_i, \Sigma e_j \rangle_X = 0.$
- For any orthonormal basis (x_k) in H_X :

$$X(\omega) = \sum_{k=1}^{\dim(H_X)} \langle X(\omega), x_k \rangle_X x_k$$
(5)

• The Spectral theorem (on covariance operator) exhibits a particular (Karhunen-Loève) basis (bi-orthogonal and $\Sigma h_k = \lambda_k h_k$):

$$X(\omega) = \sum_{k=1}^{\dim(H_X)} \sqrt{\lambda_k} \langle X(\omega), h_k \rangle h_k$$
(6)

Note P^k the linear projector on the k-th biggest eigenvalues, then: $\forall k \leq n, \min_{rank(P)=k} \mathbb{E}[||X - PX||^2] = \mathbb{E}[||X - P^kX||^2] = \lambda_{k \neq 1} + \dots + \lambda_{dim(H_X)}$

11 / 42

Gaussian element in Hilbert spaces

Consider the (real) Hilbert space H with inner product $\langle ., . \rangle$.

Gaussian random element

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (H, \mathcal{B}(H))$ a measurable mapping, then X is a Gaussian element if and only if $\forall y \in H$, $\langle X, y \rangle$ is a Gaussian random variable.

Covariance

Given a Gaussian random element X, define the bilinear form:

$$\forall x, y \in H, \ Cov(x, y) = \mathbb{E}[\langle X, x \rangle \langle X, y \rangle], \tag{8}$$

and the associated covariance operator $\mathcal{C}: \mathcal{H} \rightarrow \mathcal{H}$ such that:

$$\forall x, y \in H, \langle \mathcal{C}x, y \rangle = Cov(x, y).$$
(9)

• The covariance operator $C: H \to H$ is positive, symmetric and trace-class (see Vakhania 1987).

- The covariance operator $C: H \to H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_{\mathcal{C}} = \langle \mathcal{C}^{-1}x, y \rangle$ (it's a proper subspace of $H, H_X \hookrightarrow H$, see Vakhania 1987).

- The covariance operator $C: H \to H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_{\mathcal{C}} = \langle \mathcal{C}^{-1}x, y \rangle$ (it's a proper subspace of $H, H_X \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis (e_k) in H we can write:

$$X(\omega) = \sum_{k \ge 0} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(10)

- The covariance operator $C: H \to H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_{\mathcal{C}} = \langle \mathcal{C}^{-1}x, y \rangle$ (it's a proper subspace of $H, H_X \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis (e_k) in H we can write:

$$X(\omega) = \sum_{k \ge 0} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(10)

• For any basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$:

$$X(\omega) \stackrel{d}{=} \sum_{k \ge 0} \xi_k(\omega) x_k \tag{11}$$

- The covariance operator $C: H \to H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_{\mathcal{C}} = \langle \mathcal{C}^{-1}x, y \rangle$ (it's a proper subspace of $H, H_X \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis (e_k) in H we can write:

$$X(\omega) = \sum_{k \ge 0} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(10)

• For any basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$:

$$X(\omega) \stackrel{d}{=} \sum_{k \ge 0} \xi_k(\omega) x_k \tag{11}$$

비로 서로에서로에 사람에 제하는 비

• Spectral theorem applies and exhibits a (Karhunen-Loève) bi-orthogonal basis (h_k) : $X(\omega) = \sum_{k>0} \sqrt{\lambda_k} \xi_k(\omega) h_k$ a.s.

- The covariance operator $C: H \to H$ is positive, symmetric and trace-class (see Vakhania 1987).
- The Cameron-Martin space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_{\mathcal{C}} = \langle \mathcal{C}^{-1}x, y \rangle$ (it's a proper subspace of $H, H_X \hookrightarrow H$, see Vakhania 1987).
- For any Hilbert basis (e_k) in H we can write:

$$X(\omega) = \sum_{k \ge 0} \langle X(\omega), e_k \rangle e_k \text{ a.s.}$$
(10)

• For any basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$:

$$X(\omega) \stackrel{d}{=} \sum_{k \ge 0} \xi_k(\omega) x_k \tag{11}$$

- Spectral theorem applies and exhibits a (Karhunen-Loève) bi-orthogonal basis (h_k) : $X(\omega) = \sum_{k>0} \sqrt{\lambda_k} \xi_k(\omega) h_k$ a.s.
- Eckart-Young theorem is still valid (functional PCA, ...)

$$\forall k > 0, \min_{\operatorname{rank}(P)=k} \mathbb{E}[\|X - PX\|_{H}^{2}] = \mathbb{E}[\|X - P^{k}X\|_{H}^{2}] = \sum_{i > k} \lambda_{i} \quad (12)_{\text{Substance}}$$

13 / 42

Karhunen-Loève decomposition in Banach spaces

14 / 42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Gaussian element in Banach spaces

Consider the (real) Banach space E with duality pairing $\langle ., . \rangle_{E,E^*}$.

Gaussian random element

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and $X : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{B}(E))$ a measurable mapping, then X is a Gaussian element if and only if $\forall f \in E^*$, $\langle X, f \rangle_{E,E^*}$ is a Gaussian random variable.

Covariance

Given a Gaussian random element X, define the bilinear form:

$$\forall f,g \in E^*, \ Cov(f,g) = \mathbb{E}[\langle X,f \rangle_{E,E^*} \langle X,g \rangle_{E,E^*}], \tag{13}$$

and the associated covariance operator $C: E^* \to E$ (see Vakhania 1987 or Bogachev 1998) such that:

$$\forall f,g \in E^*, \ \langle \mathcal{C}f,g \rangle_{E,E^*} = Cov(f,g).$$

<ロト < 部ト < 臣ト < 臣ト 三日 のへで 15/42

(14)

 The covariance operator C : E^{*} → E is positive, symmetric and nuclear (see Vakhania 1987).

- The covariance operator C : E^{*} → E is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_X = \langle y, \mathcal{C}^{-1}x \rangle_{E,E^*}$ (it's a proper subspace of $E, H_X \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).

- The covariance operator C : E^{*} → E is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_X = \langle y, \mathcal{C}^{-1}x \rangle_{E,E^*}$ (it's a proper subspace of $E, H_X \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$, we have:

$$X \stackrel{d}{=} \sum_{k \ge 1} \xi_k x_k \tag{15}$$

- The covariance operator C : E^{*} → E is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_X = \langle y, \mathcal{C}^{-1}x \rangle_{E,E^*}$ (it's a proper subspace of $E, H_X \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$, we have:

$$X \stackrel{d}{=} \sum_{k \ge 1} \xi_k x_k \tag{15}$$

• $\mathcal{C}: E^* \to E \Rightarrow$ No Spectral theorem.

- The covariance operator C : E^{*} → E is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_X = \langle y, \mathcal{C}^{-1}x \rangle_{E,E^*}$ (it's a proper subspace of $E, H_X \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$, we have:

$$X \stackrel{d}{=} \sum_{k \ge 1} \xi_k x_k \tag{15}$$

- $\mathcal{C}: E^* \to E \Rightarrow$ No Spectral theorem.
- We know that (Bogachev 1998, Vakahnia 1991):
 - $\exists (x_k) \in Range(\mathcal{C})$ Hilbert basis in H_X ,
 - $\exists (x_k) \in H_X$ such that $\sum_{k \geq 0} \|h_k\|_E^2 < +\infty$,

16 / 42

- The covariance operator C : E^{*} → E is positive, symmetric and nuclear (see Vakhania 1987).
- The space H_X is the completion of $Range(\mathcal{C})$ w.r.t. $\langle x, y \rangle_X = \langle y, \mathcal{C}^{-1}x \rangle_{E,E^*}$ (it's a proper subspace of $E, H_X \hookrightarrow E$, see Vakhania 1987, Bogachev 1998).
- For any Hilbert basis (x_k) in H_X and (ξ_k) i.i.d. $\mathcal{N}(0,1)$, we have:

$$X \stackrel{d}{=} \sum_{k \ge 1} \xi_k x_k \tag{15}$$

- $\mathcal{C}: E^* \to E \Rightarrow$ No Spectral theorem.
- We know that (Bogachev 1998, Vakahnia 1991):
 - $\exists (x_k) \in Range(\mathcal{C})$ Hilbert basis in H_X ,
 - $\exists (x_k) \in H_X$ such that $\sum_{k \geq 0} \|h_k\|_E^2 < +\infty$,
- If the basis (x_k) is in $Range(\mathcal{C})$ with $x_k = \mathcal{C}x_k^*$, then:

$$X(\omega) = \sum_{k \ge 0} \langle X(\omega), x_k^* \rangle_{E, E^*} x_k \tag{16}$$

16 / 42

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).

Let $\ensuremath{\mathcal{C}}$ be the covariance operator of a Gaussian element, then:

$$\mathcal{C} = SS^*,\tag{17}$$

where $S : H \rightarrow E$ is a bounded operator and H a Hilbert space.

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).

Let \mathcal{C} be the covariance operator of a Gaussian element, then:

$$\mathcal{C} = SS^*,\tag{17}$$

where $S : H \rightarrow E$ is a bounded operator and H a Hilbert space.

Examples:

- In the Hilbert case, $S = C^{\frac{1}{2}}$,
- $S: H_X \to E$ the inclusion map,
- $S: f \in \overline{E^*}^{L^2(\mathbb{P})} \to \mathbb{E}[f(X)X] \in E$ (S^* is the injection from E^* to L^2)

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).

Let \mathcal{C} be the covariance operator of a Gaussian element, then:

$$\mathcal{C} = SS^*,\tag{17}$$

where $S : H \rightarrow E$ is a bounded operator and H a Hilbert space.

Examples:

- In the Hilbert case, $S = C^{\frac{1}{2}}$,
- $S: H_X \to E$ the inclusion map,
- $S: f \in \overline{E^*}^{L^2(\mathbb{P})} \to \mathbb{E}[f(X)X] \in E$ (S^* is the injection from E^* to L^2)

(Luschgy and Pagès 2009)

Let $C = SS^*$ with $S : H \to E$. Then for any basis (h_n) in H:

$$X \stackrel{d}{=} \sum_{k \ge 0} \xi_k Sh_k, \tag{18}$$

where (ξ_k) are i.i.d. $\mathcal{N}(0,1)$.

IJNES Setienne つ ۹ (↔ 17 / 42 This methodology has been widely used:

• When $E = \mathcal{C}([0,1])$, $S^* : f \in E^* \rightarrow L^2([0,1], dx)$...

We will now give a different methodology, mimicking the Hilbert case, to construct a Hilbert basis in H_X . We will proceed as follows:

* ロ > * 個 > * 제 > * 제 > 제 = >

- Ind "directions" of maximum variance,
- Ochoose a right notion of orthogonality to iterate,
- Study the asymptotics.

③ For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.

- **(**For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$
 - may be interpreted as a Rayleigh quotient,
 - is weakly sequentially continuous,
 - is quadratic.
- ∃ f₀ ∈ B_{E*}(0, 1) (non-unique) such that
 Cov(f₀, f₀) = max_{||f||_{E*} ≤1} Cov(f, f) = λ₀ (Banach-Alaoglu),

- **(**For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$
 - may be interpreted as a Rayleigh quotient,
 - is weakly sequentially continuous,
 - is quadratic.
- ∃ f₀ ∈ B_{E*}(0, 1) (non-unique) such that
 Cov(f₀, f₀) = max_{||f||_{E*} ≤1} Cov(f, f) = λ₀ (Banach-Alaoglu),
- If $\lambda_0 > 0$, let $x_0 \in E$ such that $Cf_0 = \lambda_0 x_0$, then $P_0 : x \in E \to \langle x, f_0 \rangle_{E,E^*} x_0$ is a projector of unit norm.

- **(**For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$
 - may be interpreted as a Rayleigh quotient,
 - is weakly sequentially continuous,
 - is quadratic.
- ∃ f₀ ∈ B_{E*}(0, 1) (non-unique) such that
 Cov(f₀, f₀) = max_{||f||_{E*} ≤1} Cov(f, f) = λ₀ (Banach-Alaoglu),
- If $\lambda_0 > 0$, let $x_0 \in E$ such that $Cf_0 = \lambda_0 x_0$, then $P_0 : x \in E \to \langle x, f_0 \rangle_{E,E^*} x_0$ is a projector of unit norm.

•
$$X = (P_0X, (I - P_0)X).$$

(For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
- ∃ f₀ ∈ B_{E*}(0, 1) (non-unique) such that
 Cov(f₀, f₀) = max_{||f||_{E*} ≤1} Cov(f, f) = λ₀ (Banach-Alaoglu),
- If $\lambda_0 > 0$, let $x_0 \in E$ such that $Cf_0 = \lambda_0 x_0$, then $P_0 : x \in E \to \langle x, f_0 \rangle_{E,E^*} x_0$ is a projector of unit norm.

$$X = (P_0X, (\mathcal{I} - P_0)X).$$

• Iterate on
$$X_1 = (\mathcal{I} - P_0)X$$
.

(For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
- ∃ f₀ ∈ B_{E*}(0, 1) (non-unique) such that
 Cov(f₀, f₀) = max_{||f||_{E*} ≤1} Cov(f, f) = λ₀ (Banach-Alaoglu),
- If $\lambda_0 > 0$, let $x_0 \in E$ such that $Cf_0 = \lambda_0 x_0$, then $P_0 : x \in E \rightarrow \langle x, f_0 \rangle_{E,E^*} x_0$ is a projector of unit norm.

$$X = (P_0X, (\mathcal{I} - P_0)X).$$

• Iterate on
$$X_1 = (\mathcal{I} - P_0)X$$
.

Bay & Croix 2017

 (λ_n) is non-increasing, $\lambda_n \to 0$ and $(\sqrt{\lambda_k} x_k)$ is a Hilbert basis in H_X .

* ロ > * 個 > * 제 > * 제 > 제 = >

(For any (Gaussian) covariance operator, $f \in E^* \to Cov(f, f) \in \mathbb{R}^+$

- may be interpreted as a Rayleigh quotient,
- is weakly sequentially continuous,
- is quadratic.
- ∃ f₀ ∈ B_{E*}(0, 1) (non-unique) such that
 Cov(f₀, f₀) = max_{||f||_{E*} ≤1} Cov(f, f) = λ₀ (Banach-Alaoglu),
- If $\lambda_0 > 0$, let $x_0 \in E$ such that $Cf_0 = \lambda_0 x_0$, then $P_0 : x \in E \rightarrow \langle x, f_0 \rangle_{E,E^*} x_0$ is a projector of unit norm.
- $X = (P_0X, (\mathcal{I} P_0)X).$

• Iterate on
$$X_1 = (\mathcal{I} - P_0)X$$
.

Bay & Croix 2017

 (λ_n) is non-increasing, $\lambda_n \to 0$ and $(\sqrt{\lambda_k} x_k)$ is a Hilbert basis in H_X .

We will note
$$x_0^* = f_0$$
 and $x_n^* = f_n - \sum_{k=0}^{n-1} \langle x_k, f_n \rangle_{E,E^*} x_k^*$ such that $P_n = \sum_{k=0}^n x_k^* \otimes x_k$ (similar to Gram-Schmidt).

비로 서로에서로에 사람에 제하는 비

Properties of the decomposition

Few comments about the previous construction...

Properties

This construction gives the following properties:

•
$$X(\omega) = \sum_{k\geq 0} \langle X(\omega), x_k^* \rangle_{E,E^*} x_k$$
 a.s.

- $C = SS^*$ with $S^* : f \in E^* \to \sum_{k \ge 0} \lambda_k \langle x_k, f \rangle_{E,E^*} x_k$
- Note $C^n = \sum_{k=0}^n \lambda_k x_k \otimes x_k$ then $\|C C^n\|_{\mathcal{L}(E^*,E)} = \lambda_{n+1}$.
- Recovers Karhunen-Loève basis in the Hilbert case.
- $(x_k, x_k^*) \subset E \times E^*$ is bi-orthogonal.

•
$$\overline{Vect(x_k, k \ge 0)}^E = \overline{H_X}^E$$
,

• $\forall k \in \mathbb{N}, \ \|f_k\|_{E^*} = \|x_k\|_E = 1.$

Remarks

- $\sum_{k\geq 0} \lambda_k$ need not be finite (not a nuclear representation of C).
- Optimality seems out of reach (Rate optimality ?).

Particular case of $(\mathbb{R}^n, \|.\|_{\infty})$

21 / 42

Here, $E^* = (\mathbb{R}^n, \|.\|_1)$ and $\forall (x, f) \in E \times E^*$, $\langle x, f \rangle_{E, E^*} = \sum_{i=1}^n x_i f_i$.

- Suppose a centered dataset $(y_i)_{i \in [1,p]} \in (\mathbb{R}^n)^p$,
- Form the usual covariance matrix $\Sigma \in \mathcal{M}_n(\mathbb{R})$,
- Find the direction of maximal variance $f_0 \in \mathbb{R}^n$:

$$\lambda_0 = f_0^T \Sigma f_0 = \max_{i \in [1,n]} \Sigma_{(i,i)} \text{ with } f_0 = (0, ..., 0, 1, 0, ..., 0)$$
(19)

- If $\lambda_0 > 0$ then $x_0 = \frac{\Sigma f_0}{\lambda_0}$.
- $\Sigma_1 = \Sigma \lambda_0 x_0 x_0^T$
- Iterate.

Application in \mathbb{R}^n

- Residuals norm as $r_k = \frac{1}{n} \sum_{i=1}^n ||x_i \sum_{j=0}^k \langle x_i, x_j^* \rangle_{E,E^*} x_j ||_{\infty}$, Projections norm as $p_k = \frac{1}{n} \sum_{i=1}^n ||\sum_{j=0}^k \langle x_i, x_j^* \rangle_{E,E^*} x_j ||_{\infty}$.

Figure: Residuals (decreasing) and projections (increasing) norm (blue for L2-PCA, red for Banach PCA)

正明 スポッスポッス モッ

Particular case of C(K), K metric and compact.

24 / 42

ショック 単前 エル・エット 山戸 シュウ

Let X be a Gaussian element such that $X \in C(K)$ almost-surely and suppose that

$$k: (s,t) \in \mathcal{K}^2 \to \langle \mathcal{C}\delta_s, \delta_t \rangle_{E,E^*} = Cov(X_s, X_t) \in \mathbb{R}$$
(20)

is continuous. The Cameron-Martin space H_X coincides here with the Reproducing Kernel Hilbert space (RKHS). The previous decomposition becomes:

- Set n = 0 and $k_n = k$,
- Solution Find $x_n \in K$ such that $k_n(x_n, x_n) = \max_{x \in K} k_n(x, x)$,
- If $\lambda_n = k_n(x_n, x_n) > 0$ then $k_{n+1}(s, t) = k_n(s, t) \frac{k_n(s, x_n)k_n(x_n, t)}{\lambda_n}$,
- $n \leftarrow n+1.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Illustration on Brownian motion: Step 1

Figure: Left: Brownian motion samples and point-wise (symmetrized) variance. Right: First basis function $x_0(t) = t$ associated to $f_0 = \delta_1$.

Illustration on Brownian motion: Step 2

Figure: Left: Brownian bridge samples and point-wise (symmetrized) variance. <u>Right:</u> Second basis function $x_1(t) = \min(t, 0.5) - 0.5t$, associated to $f_1 = \delta_{\frac{1}{2}}$.

Illustration on Brownian motion: Step 3

Figure: <u>Left</u>: Conditional Brownian motion samples and point-wise (symmetrized) variance. Right: Third and fourth basis functions.

A word on summability

The proposed decomposition need not be a nuclear representation of C, that is $\sum_{k>0} \lambda_k \in [0, +\infty]$. Indeed, the Brownian case shows us:

$$\sum_{k\geq 0} \lambda_k = 1 + \frac{1}{2} + 2 * \frac{1}{4} + 4 * \frac{1}{16} + 8 * \frac{1}{32} + \dots = +\infty$$
 (21)

However, a simple transformation gives a nuclear representation in this case:

$$\tilde{t}_{2}^{1} = \frac{t_{2}^{1} - t_{2}^{2}}{2} \Rightarrow Cov(\tilde{t}_{2}^{1}, \tilde{t}_{2}^{1}) = \frac{Cov(t_{2}^{1}, t_{2}^{1})}{2} = \frac{1}{8}$$
(22)

$$\tilde{f}_{2}^{2} = \frac{f_{2}^{1} + f_{2}^{2}}{2} \Rightarrow Cov(\tilde{f}_{2}^{2}, \tilde{f}_{2}^{2}) = \frac{Cov(f_{2}^{2}, f_{2}^{2})}{2} = \frac{1}{8}$$
(23)

Doing similar transformations at each step gives:

$$\sum_{k\geq 0} \lambda_k = 1 + \frac{1}{2} + 2 * \frac{1}{8} + 4 * \frac{1}{64} + 8 * \frac{1}{256} + \dots = 2$$
 (24)

Remark that $\mathbb{E}[\|\sum_{k\geq n}\xi_k h_k\|^2] \leq \sum_{k\geq n}\lambda_k$, thus the approximation error $\sum_{saint-Element}^{MINS}$ is exponentially decreasing !

Conclusion and open questions

30 / 42

Conclusion and open questions

Conclusions

- New "practical" method to represent Gaussian elements, based on covariance operator.
- Numerical solution in the case of E = C(K) (K metric and compact).
- Rediscovers Paul Levy's construction of Brownian motion.

Open question & future work

- Other properties of $(x_k, x_k^*) \in E \times E^*$?
- Rate optimality of finite dimensional approximations in C(K)?
- Multiplicity of decomposition elements ?
- Links with approximation numbers (ex: I(X) = E[||X||²]^{1/2}) approximation theory (s-numbers) ? Properties of Banach spaces ?
- Optimality for projection norm ? Dual problem ?
- Interpretation of $\sum_{k>0} \lambda_k$ when it is finite ?
- Evolution of $||x_k^*||_{E^*}$?

References

X. Bay, J.-C. Croix.

Karhunen-Loève decomposition of Gaussian measures on Banach spaces. ArXiV. 2017.

H. Luschgy, G. Pagès. Expansions For Gaussian Processes And Parseval Frames. Electronic Journal of Probability, 14, 2009, 1198-1221.

N. Vakhania.

Canonical Factorization of Gaussian covariance operators and some of its applications.

Theory of Probability and Its Applications, 1991.

📎 V. Bogachev.

Gaussian Measures.

Mathematical Surveys and Monographs vol. 62, AMS, 1998.

N. Vakhania, V. Tarieladze, S. Chobanyan. 🍋 Probability Distributions on Banach spaces. Mathematics and Its Applications, Springer Netherlands, 1987.

Appendix

< □ > < 큔 > < 분 > < 분 > 분 = 키९♡ 34/42

Figure: Wiener measure basis functions.

35 / 42

◆□▶ ◆□▶ ◆目▶ ◆目▼ ●●●

Figure: Wiener measure basis variances.

36 / 42

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

37 / 42

◆□▶ ◆□▶ ◆目▶ ◆目▼ ●●●

Figure: $k(s, t) = \exp\left(-\frac{(s-t)^2}{2}\right)$ basis variances.

38 / 42

Figure: Matern 3/2 kernel basis functions.

<ロト < 部ト < 臣ト < 臣ト 三国 のへの 39/42

Figure: Matern 3/2 kernel basis variances.

40 / 42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Figure: Fractional brownian motion (H = 75%) basis functions.

41 / 42

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Figure: Fractional brownian motion (H = 25%) basis functions.

42 / 42

うつつ 正則 スポットボット (四) スロッ