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Motivation

The problem of representation of Gaussian elements in linear series is
used in:

1 Simulation (e.g. truncated Karhunen-Loève series),

2 Approximation and Dimension reduction (e.g. PCA or POD),

3 Optimal quantization,

4 Bayesian inverse problems.

If the existence of an optimal basis is well known in Hilbert spaces...

... it’s not always explicit (eigenvalue problem),

... it’s not the case in Banach spaces.

What if we are interested in non-Hilbertian norms ?
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Motivation

In the case of a continuous Gaussian process on [0, 1] we may inject it in
L2([0, 1], dx) and use Hilbertian geometry...
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Figure: Karhunen-Loève basis of Brownian motion in L2([0, 1], dx).
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Motivation

or tackle the problem directly in C ([0, 1])...
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Figure: Brownian motion basis functions in C([0, 1]) (Paul Levy’s construction).

...in the hope of better approximation w.r.t. supremum norm !
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Karhunen-Loève decomposition in Hilbert spaces
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Gaussian vector in Euclidian spaces

Consider the euclidian space Rn with canonical inner product 〈., .〉.

Gaussian random vector

Let (Ω,F ,P) a probability space and X : (Ω,F ,P)→ (Rn,B(Rn)) a
measurable mapping, then X is a Gaussian vector if and only if ∀y ∈ Rn,
〈X , y〉 is a Gaussian random variable.

Covariance

Given a (centered) Gaussian random vector X , define the bilinear form:

∀x , y ∈ Rn, Cov(x , y) = E[〈X , x〉〈X , y〉], (1)

which uniquely defines Σ : Rn → Rn such that:

∀x , y ∈ Rn, 〈Σx , y〉 = Cov(x , y). (2)
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Cameron-Martin and Gaussian spaces

Considering the Gaussian vector X gives a fundamental structure:

Gaussian space: Vect(〈X , ek〉, k ∈ [1, n]) ⊂ L2(P)

Cameron-Martin space HX = Range(Σ) equipped with
〈., .〉X = 〈Σ−1., .〉

Loève isometry

The following application:

〈X , x〉 ∈ L2(P)→ Σx ∈ HX (3)

is an isometry.
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Representation of Gaussian vectors in Rn

For any orthonormal basis (ek) in Rn, we can write:

X (ω) =
n∑

k=1

〈X (ω), ek〉ek a.s. (4)

〈X (ω), ei 〉, 〈X (ω), ej〉 are independent if and only if
Cov(ei , ej) = 〈Σei , ej〉 = 〈Σei ,Σej〉X = 0.
For any orthonormal basis (xk) in HX :

X (ω) =

dim(HX )∑
k=1

〈X (ω), xk〉X xk (5)

The Spectral theorem (on covariance operator) exhibits a particular
(Karhunen-Loève) basis (bi-orthogonal and Σhk = λkhk):

X (ω) =

dim(HX )∑
k=1

√
λk〈X (ω), hk〉hk (6)

Note Pk the linear projector on the k-th biggest eigenvalues, then:

∀k ≤ n, min
rank(P)=k

E[‖X −PX‖2] = E[‖X −PkX‖2] = λk+1 + ...+λdim(HX )

(7)
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(Karhunen-Loève) basis (bi-orthogonal and Σhk = λkhk):

X (ω) =

dim(HX )∑
k=1

√
λk〈X (ω), hk〉hk (6)

Note Pk the linear projector on the k-th biggest eigenvalues, then:

∀k ≤ n, min
rank(P)=k

E[‖X −PX‖2] = E[‖X −PkX‖2] = λk+1 + ...+λdim(HX )

(7)
10 / 42



Representation of Gaussian vectors in Rn
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Figure: Karhunen-Loève basis in dimension 2.
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Gaussian element in Hilbert spaces

Consider the (real) Hilbert space H with inner product 〈., .〉.

Gaussian random element

Let (Ω,F ,P) a probability space and X : (Ω,F ,P)→ (H,B(H)) a
measurable mapping, then X is a Gaussian element if and only if ∀y ∈ H,
〈X , y〉 is a Gaussian random variable.

Covariance

Given a Gaussian random element X , define the bilinear form:

∀x , y ∈ H, Cov(x , y) = E[〈X , x〉〈X , y〉], (8)

and the associated covariance operator C : H → H such that:

∀x , y ∈ H, 〈Cx , y〉 = Cov(x , y). (9)
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Representation of Gaussian elements in Hilbert spaces

The covariance operator C : H → H is positive, symmetric and
trace-class (see Vakhania 1987).

The Cameron-Martin space HX is the completion of Range(C) w.r.t.
〈x , y〉C = 〈C−1x , y〉 (it’s a proper subspace of H, HX ↪→ H, see
Vakhania 1987).
For any Hilbert basis (ek) in H we can write:

X (ω) =
∑
k≥0

〈X (ω), ek〉ek a.s. (10)

For any basis (xk) in HX and (ξk) i.i.d. N (0, 1):

X (ω)
d
=

∑
k≥0

ξk(ω)xk (11)

Spectral theorem applies and exhibits a (Karhunen-Loève)
bi-orthogonal basis (hk): X (ω) =

∑
k≥0

√
λkξk(ω)hk a.s.

Eckart-Young theorem is still valid (functional PCA, ...)

∀k > 0, min
rank(P)=k

E[‖X − PX‖2
H ] = E[‖X − PkX‖2

H ] =
∑
i>k

λi (12)
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Karhunen-Loève decomposition in Banach spaces

14 / 42



Gaussian element in Banach spaces

Consider the (real) Banach space E with duality pairing 〈., .〉E ,E∗ .

Gaussian random element

Let (Ω,F ,P) a probability space and X : (Ω,F ,P)→ (E ,B(E )) a
measurable mapping, then X is a Gaussian element if and only if
∀f ∈ E∗, 〈X , f 〉E ,E∗ is a Gaussian random variable.

Covariance

Given a Gaussian random element X , define the bilinear form:

∀f , g ∈ E∗, Cov(f , g) = E[〈X , f 〉E ,E∗〈X , g〉E ,E∗ ], (13)

and the associated covariance operator C : E∗ → E (see Vakhania 1987
or Bogachev 1998) such that:

∀f , g ∈ E∗, 〈Cf , g〉E ,E∗ = Cov(f , g). (14)

15 / 42



Representation of Gaussian elements in Banach spaces

The covariance operator C : E∗ → E is positive, symmetric and
nuclear (see Vakhania 1987).

The space HX is the completion of Range(C) w.r.t.
〈x , y〉X = 〈y , C−1x〉E ,E∗ (it’s a proper subspace of E , HX ↪→ E , see
Vakhania 1987, Bogachev 1998).

For any Hilbert basis (xk) in HX and (ξk) i.i.d. N (0, 1), we have:

X
d
=

∑
k≥1

ξkxk (15)

C : E∗ → E ⇒ No Spectral theorem.

We know that (Bogachev 1998, Vakahnia 1991):
∃(xk) ∈ Range(C) Hilbert basis in HX ,
∃(xk) ∈ HX such that

∑
k≥0‖hk‖

2
E < +∞,

If the basis (xk) is in Range(C) with xk = Cx∗k , then:

X (ω) =
∑
k≥0

〈X (ω), x∗k 〉E ,E∗xk (16)
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Representation of Gaussian elements in Banach spaces

Factorization of covariance operators (Vakhania 1987, Bogachev 1998).

Let C be the covariance operator of a Gaussian element, then:

C = SS∗, (17)

where S : H → E is a bounded operator and H a Hilbert space.

Examples:
In the Hilbert case, S = C 1

2 ,
S : HX → E the inclusion map,

S : f ∈ E∗
L2(P) → E[f (X )X ] ∈ E (S∗ is the injection from E∗ to L2)

(Luschgy and Pagès 2009)

Let C = SS∗ with S : H → E . Then for any basis (hn) in H:

X
d
=

∑
k≥0

ξkShk , (18)

where (ξk) are i.i.d. N (0, 1).
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Factorization of covariance operators (Vakhania 1987, Bogachev 1998).
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C = SS∗, (17)

where S : H → E is a bounded operator and H a Hilbert space.
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In the Hilbert case, S = C 1
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Representation of Gaussian elements in Banach spaces

This methodology has been widely used:

When E = C([0, 1]), S∗ : f ∈ E∗ → L2([0, 1], dx)...

We will now give a different methodology, mimicking the Hilbert case, to
construct a Hilbert basis in HX . We will proceed as follows:

1 Find ”directions” of maximum variance,

2 Choose a right notion of orthogonality to iterate,

3 Study the asymptotics.

18 / 42



Decomposition of the Cameron-Martin space

1 For any (Gaussian) covariance operator, f ∈ E∗ → Cov(f , f ) ∈ R+

may be interpreted as a Rayleigh quotient,
is weakly sequentially continuous,
is quadratic.

2 ∃f0 ∈ BE∗(0, 1) (non-unique) such that
Cov(f0, f0) = max‖f ‖E∗≤1 Cov(f , f ) = λ0 (Banach-Alaoglu),

3 If λ0 > 0, let x0 ∈ E such that Cf0 = λ0x0, then
P0 : x ∈ E → 〈x , f0〉E ,E∗x0 is a projector of unit norm.

4 X = (P0X , (I − P0)X ).

5 Iterate on X1 = (I − P0)X .

Bay & Croix 2017

(λn) is non-increasing, λn → 0 and (
√
λkxk) is a Hilbert basis in HX .

We will note x∗0 = f0 and x∗n = fn −
∑n−1

k=0〈xk , fn〉E ,E∗x∗k such that
Pn =

∑n
k=0 x

∗
k ⊗ xk (similar to Gram-Schmidt).
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Properties of the decomposition

Few comments about the previous construction...

Properties

This construction gives the following properties:

X (ω) =
∑

k≥0〈X (ω), x∗k 〉E ,E∗xk a.s.

C = SS∗ with S∗ : f ∈ E∗ →
∑

k≥0 λk〈xk , f 〉E ,E∗xk

Note Cn =
∑n

k=0 λkxk ⊗ xk then ‖C − Cn‖L(E∗,E) = λn+1.

Recovers Karhunen-Loève basis in the Hilbert case.

(xk , x
∗
k ) ⊂ E × E∗ is bi-orthogonal.

Vect(xk , k ≥ 0)
E

= HX
E

,

∀k ∈ N, ‖fk‖E∗ = ‖xk‖E = 1.

Remarks∑
k≥0 λk need not be finite (not a nuclear representation of C).

Optimality seems out of reach (Rate optimality ?).
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Particular case of (Rn, ‖.‖∞)
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Application in Rn

Here, E∗ = (Rn, ‖.‖1) and ∀(x , f ) ∈ E × E∗, 〈x , f 〉E ,E∗ =
∑n

i=1 xi fi .

Suppose a centered dataset (yi )i∈[1,p] ∈ (Rn)p,

Form the usual covariance matrix Σ ∈Mn(R),

Find the direction of maximal variance f0 ∈ Rn:

λ0 = f T0 Σf0 = max
i∈[1,n]

Σ(i,i) with f0 = (0, ..., 0, 1, 0, ..., 0) (19)

If λ0 > 0 then x0 = Σf0
λ0

.

Σ1 = Σ− λ0x0x
T
0

Iterate.
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Application in Rn

Residuals norm as rk = 1
n

∑n
i=1‖xi −

∑k
j=0〈xi , x∗j 〉E ,E∗xj‖∞,

Projections norm as pk = 1
n

∑n
i=1‖

∑k
j=0〈xi , x∗j 〉E ,E∗xj‖∞.

Figure: Residuals (decreasing) and projections (increasing) norm (blue for
L2-PCA, red for Banach PCA)
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Particular case of C (K ), K metric and compact.
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E = C (K ) with K metric compact.

Let X be a Gaussian element such that X ∈ C (K ) almost-surely and
suppose that

k : (s, t) ∈ K 2 → 〈Cδs , δt〉E ,E∗ = Cov(Xs ,Xt) ∈ R (20)

is continuous. The Cameron-Martin space HX coincides here with the
Reproducing Kernel Hilbert space (RKHS). The previous decomposition
becomes:

1 Set n = 0 and kn = k ,

2 Find xn ∈ K such that kn(xn, xn) = maxx∈K kn(x , x),

3 If λn = kn(xn, xn) > 0 then kn+1(s, t) = kn(s, t)− kn(s,xn)kn(xn,t)
λn

,

4 n← n + 1.
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Illustration on Brownian motion: Step 1

Figure: Left: Brownian motion samples and point-wise (symmetrized) variance.
Right: First basis function x0(t) = t associated to f0 = δ1.
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Illustration on Brownian motion: Step 2

Figure: Left: Brownian bridge samples and point-wise (symmetrized) variance.
Right: Second basis function x1(t) = min(t, 0.5)− 0.5t, associated to f1 = δ 1

2
.
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Illustration on Brownian motion: Step 3

Figure: Left: Conditional Brownian motion samples and point-wise
(symmetrized) variance. Right: Third and fourth basis functions.
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A word on summability

The proposed decomposition need not be a nuclear representation of C,
that is

∑
k≥0 λk ∈ [0,+∞]. Indeed, the Brownian case shows us:∑
k≥0

λk = 1 +
1

2
+ 2 ∗ 1

4
+ 4 ∗ 1

16
+ 8 ∗ 1

32
+ ... = +∞ (21)

However, a simple transformation gives a nuclear representation in this
case:

f̃ 1
2 =

f 1
2 − f 2

2

2
⇒ Cov(f̃ 1

2 , f̃
1

2 ) =
Cov(f 1

2 , f
1

2 )

2
=

1

8
(22)

f̃ 2
2 =

f 1
2 + f 2

2

2
⇒ Cov(f̃ 2

2 , f̃
2

2 ) =
Cov(f 2

2 , f
2

2 )

2
=

1

8
(23)

Doing similar transformations at each step gives:∑
k≥0

λk = 1 +
1

2
+ 2 ∗ 1

8
+ 4 ∗ 1

64
+ 8 ∗ 1

256
+ ... = 2 (24)

Remark that E[‖
∑

k≥n ξkhk‖2] ≤
∑

k≥n λk , thus the approximation error
is exponentially decreasing !
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Conclusion and open questions
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Conclusion and open questions

Conclusions

New ”practical” method to represent Gaussian elements, based on
covariance operator.

Numerical solution in the case of E = C (K ) (K metric and
compact).

Rediscovers Paul Levy’s construction of Brownian motion.

Open question & future work

Other properties of (xk , x
∗
k ) ∈ E × E∗ ?

Rate optimality of finite dimensional approximations in C (K )?

Multiplicity of decomposition elements ?

Links with approximation numbers (ex: l(X ) = E[‖X‖2]
1
2 )

approximation theory (s-numbers) ? Properties of Banach spaces ?

Optimality for projection norm ? Dual problem ?

Interpretation of
∑

k≥0 λk when it is finite ?

Evolution of ‖x∗k ‖E∗ ?
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Examples with different kernels

0.0 0.2 0.4 0.6 0.8 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Basis functions

f0
f1
f2
f3
f4
f5
f6
f7

Figure: Wiener measure basis functions.
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Examples with different kernels
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Figure: Wiener measure basis variances.
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Examples with different kernels
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Examples with different kernels
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Figure: Matern 3/2 kernel basis functions.
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Examples with different kernels
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Figure: Matern 3/2 kernel basis variances.
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Examples with different kernels
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Figure: Fractional brownian motion (H = 75%) basis functions.
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Examples with different kernels
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Figure: Fractional brownian motion (H = 25%) basis functions.
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